
Burbury Consulting New Bridgewater Bridge Project air emissions assessment

Report No. 5420_AQ_R_R1

TARKARRI ENGINEERING PTY LTD PO Box 506 Kings Meadows TAS 7249

November 2021

Air Quality • Acoustics • Environment • Vibration

DOCUMENT CONTROL

NEW BRIDGEWATER BRIDGE PROJECT AIR EMISSIONS ASSESSMENT	
Report No.	Library Code
5420_AQ_R1 Prepared for	ACAQ Prepared by
Burbury Consulting	Tarkarri Engineering Pty Ltd
2/2 Gore St	PO Box 506
South Hobart, 7004	Kings Meadows
Tasmania 7004	Tasmania 7249
Contact Mr Bryce Taplin	Contact Dr Alex McLeod
	☎ +61 3 6343 2077
Mobile +61(0)409 195 852	Mobile +61(0)439 357 297
Email <u>btaplin@burburyconsulting.com.au</u>	Email alex.mcleod@tarkarri.com

Author	Alex McLeod Director / Principal Consultant	Date: 12 August 2021
Revision History		
Revision No.	Date Issued	Reason/Comments
1	12/11/2021	DAP comments
Distribution		
Сору No	Revision No.	Location
1	1	Project/Client File
2	1	Client
3	1	Tarkarri Engineering Library
Keywords	Dispersion, 99.9 percentile, 1 hr, 8 hr and 24 hour average, annual average, background, glc	

Table of Contents

Execu	itive summary	6
1	Introduction	7
2	Site description	7
2.1	Terrain	10
3	Criterion	11
3.1	Operational phase	11
3.1.1	CO	11
3.1.2	NO ₂	12
3.1.3	SO ₂	12
3.1.4	Particulate matter	12
3.1.5	VOCs	13
3.2	Construction phase	13
3.2.1	PM ₁₀	13
3.2.2	TSP	13
3.2.3	Deposition	13
4	Modelling methodology	14
4.1	ТАРМ	
4.2	CALMET	14
4.3	CALPUFF	16
5	Meteorology	
5.1.1	Wind rose comparison	
5.1.2	CALMET meteorological outputs	
6	Background concentrations	
7	Model input information	
7.1	Operational phase	
7.1.1	Configuration data	
7.1.2	Emission rates	
7.2	Construction phase	
7.3	Discrete receptors	
7.4	Aerial views	
8	Modelling results	
8.1	Operational phase	
8.1.1	2021	
8.1.2	2031	
8.2	Construction phase	
9	Discussion and conclusions	
9.1	Operational phase	
9.2	Construction phase	
9.3	Air quality monitoring program	
9.3.1	AQMS	
9.3.2	Dust deposition	
9.3.3	Monitoring results	
	ndix	
	e location coordinates	
	tional phase	
	ruction phase	
	data	
	speciation	
	eport	
	-1	

List of figures

Figure 2-1: Aerial view with The Project Land extent marked
Figure 2-2: Aerial view of the Bridgewater Bridge site and surrounds with terrain overlay 10
Figure 4-1: Aerial view of study area with land use overlay
Figure 5-1: Aerial view showing the location of Hobart (Ellerslie Road) and the Bridgewater
Bridge
Figure 5-2: 9 am and 3 pm wind roses for Hobart18
Figure 5-3: Annual and seasonal CALMET wind roses for the Bridgewater Bridge site 19
Figure 5-4: CALMET diurnal wind speed variation at the Bridgewater Bridge site
Figure 5-5: CALMET diurnal wind direction variation at the Bridgewater Bridge site20
Figure 5-6: CALMET diurnal mixing height variation at the Bridgewater Bridge site
Figure 5-7: CALMET diurnal atmospheric stability variation at the Bridgewater Bridge site 22
Figure 7-1: Aerial view showing emission source locations, Existing
Figure 7-2: Aerial view showing emission source locations, Option 1
Figure 7-3: Aerial view showing emission source locations, Option 2
Figure 7-4: Aerial view showing emission source locations, Construction
Figure 7-5: Aerial view showing discrete receptor locations
Figure 7-6: Aerial view showing discrete receptor locations
Figure 9-1: Aerial view with proposed AQMS location and The Project Land extent highlighted.

List of tables

Table 5-1: Long term climate statistics, BoM weather station HOBART (ELLERSLIE F 094029.	ROAD): 17
Table 5-2: CALMET annual percent occurrence of atmospheric stability classes	
Bridgewater Bridge site	22
Table 7-1: Weighted average emissions per vehicle by, vehicle type, 2021	23
Table 7-2: Weighted average emissions per vehicle, by vehicle type, 2021	24
Table 7-3: Traffic count data utilisation.	25
Table 7-4: Emission model input source information.	26
Table 7-5: Emission model source emission rates, Existing (2021)	26
Table 7-6: Emission model source emission rates, Options 1 & 2 (2021)	27
Table 7-7: Emission model source emission rates, Options 1 & 2 (2031)	27
Table 7-8: Emission model source information, Construction.	29
Table 7-9: Discrete (residential) receptor model location information.	30
Table 8-1: Discrete receptor location glc values, Existing 2021	38
Table 8-2: Discrete receptor location glc values, Option 1, 2021	39
Table 8-3: Discrete receptor location glc values, Option 2, 2021	40
Table 8-4: Discrete receptor location glc values, Option 1, 2031	41
Table 8-5: Discrete receptor location glc values, Option 2, 2031	42
Table 8-6: Discrete receptor location glc values, Construction	

References

[1] Department of Primary Industries, Water and Environment (2005) ENVIRONMENT PROTECTION POLICY (AIR QUALITY) 2004.

[2] NSW Environment Protection Authority (2016) Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales.

[3] Transport Energy/Emission Research (2021) *Simulation of the Tasmanian on-road fleet mix with the Australian Fleet Model (AFM).*

[4] Austroads (2019) Guide to Pavement Technology Part 4K: Selection and Design of Sprayed Seals. Publication No. AGPT04K-18.

[5] Australian Government, Dept of Sustainability, Environment, Water, Population and Communities (January 2012) *National Pollutant Inventory Emission Estimation Technique Manual for Mining Version 3.1.*

[6] United States Environmental Protection Agency AP-42 Compilation of Air Emissions Factors, Fifth Edition, Volume I, Chapter 13: Miscellaneous Sources, (2006) 13.2.2 Unpaved Roads.

Executive summary

Tarkarri Engineering was commissioned by Burbury Consulting on behalf of the Department of State Growth to conduct an air emission assessment for the New Bridgewater Bridge Project. The assessment is a requirement of the Assessment Criteria for the project developed by Development Assessment Panel for the Tasmanian Planning Commission.

Air emissions modelling of the operational phase of the project from both the existing and new crossing are well below criterion levels by an order of magnitude or more. The new crossing options provide traffic flows at higher speeds resulting in typically a significant decrease in predicted ground level concentrations for the air constituents of concern. Modelling of future traffic shows a further reduction in predicted levels despite increased traffic flows due to improvement in the Tasmanian road fleet. The modelling results suggests that the New Bridgewater Bridge Project when completed and operational should result in improved outcomes with regard to air emissions from vehicle traffic within the Project Land.

Modelling of the construction phase of the project indicates areas of concern, particularly, on the southern side of the Derwent River. Additional controls (over and above watering of exposed surfaces at 2 litres/m²/h) are likely to be require. These include:

- Minimising exposed surfaces through construction planning and progressive rehabilitation.
- Higher watering rate for exposed surfaces on the southern side of the Derwent River, nominally >2 litres/m²/h.
- Provision of adequate water supply to maintain watering rates (except during rain events) and provide water for spray systems.
- Locating stockpiles in wind protected areas and either covering or using water sprays to control dust generation.
- Covering of all haul loads.

A dust management plan should be prepared prior to the commencement of construction and would include a program of monitoring to allow for management to be adjusted.

1 Introduction

Tarkarri Engineering was commissioned by Burbury Consulting on behalf of the Department of State Growth (DSG) to conduct an air emission assessment for the New Bridgewater Bridge Project. Assessment Criteria for the project developed by Development Assessment Panel for the Tasmanian Planning Commission are applicable under section 5.1.1 of the criteria document and detailed in Schedule 2. The detailed section relevant to air emissions is provided below.

S2.2.1 Air emissions

The following information requirements and matters must be addressed for clause 5.1.1 Air emissions:

- (a) identification of air emission constituents of concern and sensitive receptors during construction and operational phases, include the following details:
 - (i) location of sensitive receptors;
 - (ii) sources of air emissions and their locations; and
 - (iii) constituents of emissions for each source, their quantities, and rates of emission to the atmosphere.
- (b) assessment of construction and operational phase emissions with respect to the likelihood of causing environmental nuisance or environmental harm, including:
 - establishing a baseline for air quality in the vicinity of sensitive receptors prior to the commencement of construction by implementing an air monitoring program to determine ambient concentrations of pollutants associated with construction emissions and with vehicle emissions;
 - (ii) continued operation of the air monitoring program to monitor air quality in the vicinity of sensitive receptors during construction and operational phases of the project;
 - (iii) air dispersion modelling of the potential impact of emissions from the construction and operational phases of the project using a conservative approach and appropriate input data; and
 - (iv) assessment of the potential of emissions from the construction and operational phases of the project to cause environmental nuisance or environmental harm; and
- (c) development of construction and operational phase design, management and mitigation strategies, if required.

2 Site description

The Project objective is to provide a new river crossing for motor vehicles between Granton and Bridgwater, with connections to the Lyell Highway and other surrounding roads.

The existing causeway and bridge currently provide single lane traffic flow in either direction and no grade separation of road junctions at either end. The Project when complete would provide dual carriageway in both directions and grade separation at both the southern and northern interchanges.

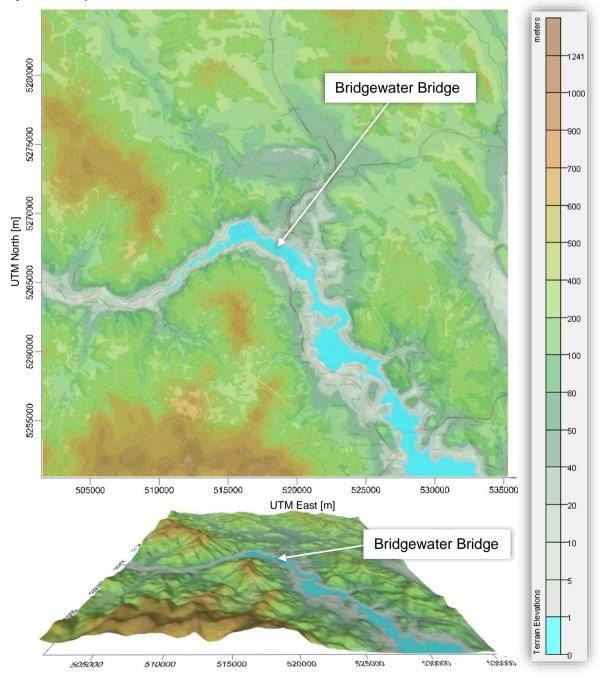
Two options for the new crossing are assessed here with Option 1 incorporating the existing causeway into the north bound traffic lanes and a new bridge for south bound lanes (also called

the Reference Design) while Option 2 is a separate bridge for both directions of traffic. Tenderers will develop their own designs and as such the options assessed here are example designs only for assessment purposes.

Figure 2-1 provides an aerial view with the extent of The Project Land shown.

Burbury Consulting - New Bridgewater Bridge Project air emissions assessment.

Figure 2-1: Aerial view with The Project Land extent marked.


⁵⁴²⁰_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

2.1 Terrain

Figure 2-2 below provides an aerial view of the terrain surrounding the Bridgewater Bridge site (3D view with X2 exaggeration). The terrain overlay is from the CALMET model (see Section 4.2 of this report for details) and was processed from the SRTM-1 digital elevation model (30 m resolution) data produced by NASA.

The Bridgewater Bridge is located at a major bend in the Derwent River Valley where the river transitions from a west to east flow direction to a north-west to south-east direction. Platform Peak and Mt Faulkner are significant topographic features locally and minor tributary valleys system are present to the north.

3 Criterion

Under the *Environment Protection Policy (Air Quality) 2004*^[1] the following is stated with regard to the management of diffuse air emission sources (road emission sources are considered diffuse in nature)

Part 5 - MANAGING DIFFUSE SOURCES OF AIR CONTAMINANTS

Management of diffuse sources of air pollution

16. (1) Regulatory authorities should manage and regulate diffuse sources of air pollution that have the potential to cause material or serious environmental harm or an environmental nuisance in such a manner as will protect the environmental values identified in this Policy.

(2) Diffuse sources of air pollution should be managed using best practice environmental management so as to:

(a) minimise emissions; and

(b) manage those emissions that are unavoidable in a manner that minimises impacts on health, safety or amenity.

(3) Diffuse sources of air pollution should be managed in accordance with any relevant guidelines published, adopted or endorsed by the Board for the purposes of this clause.

(4) Diffuse sources of air pollution must be managed in accordance with any regulations made under the Act.

For the purposes of this assessment the modelling of fugitive road emissions will be modelled in accordance with the Schedule 2 – Design Criteria with the '...99.9 percentile peak concentration for averaging periods of one hour or less and the 100 percentile peak concentrations otherwise' considered.

Criteria for air constituent for the assessment of potential environmental harm / nuisance are taken from the National Environment Protection (Ambient Air Quality) Measure (Air NEPM), and NSW Environment Protection Authority (EPA). Concentrations are reported for gas volumes at 0°C and 1 atmosphere.

3.1 Operational phase

The constituents of concern for the operational phase are those identified in Air NEPM as providing a measure that allows for the adequate protection of human health and well-being along with the addition of volatile organic compounds (VOCs).

3.1.1 CO

Carbon monoxide is produced through the incomplete combustion of fossil fuels. CO combines with haemoglobin in the body to form carboxyhaemoglobin that can deprive the body of oxygen. Short-term effects of CO can also include headaches and nausea.

Air NEPM standard.

Averaging period	Maximum concentration
8 hour	11,254 µg/m³

3.1.2 NO₂

Oxides of nitrogen are emitted by motor vehicles and are comprised mainly of nitrogen oxide (NO) and nitrogen dioxide (NO₂). Nitrogen oxide is produced by the high temperature combustion in the presence of nitrogen and oxygen. NO is converted to NO₂ in the atmosphere. Exposure to high concentrations of NO₂ can result in decreased lung function.

Air NEPM standard.

Averaging period	Maximum concentration
1 hour	164.3 µg/m³
1 year	30.8 µg/m³

3.1.3 SO₂

Sulphur dioxide is released during the combustion process of fuels. With modern fuel standards the release is relatively small from vehicles when compared to other gases. Sulphur dioxide can affect lung function and cause eye irritation.

Air NEPM standard.

Averaging period	Maximum concentration
1 hour	286 µg/m³
1 day	57.2 μg/m³

3.1.4 Particulate matter

In the atmosphere, particles range in size from 0.1 to 50 μ m. Health impacts relate to the extent to which they can penetrate the respiratory tract. Particles with an aerodynamic diameter greater than 10 μ m, are generally screened out in the upper respiratory tract by adhering to mucus in the nose, mouth, pharynx and larger bronchi and are removed by either swallowing or expectorating. Very fine particles, in particular those less than 2.5 μ m, can be deposited in the pulmonary region. It is these particles that are of greatest concern to health.

3.1.4.1 PM₁₀

Air NEPM standard.

Averaging period	Maximum concentration
1 day	50 μg/m³
1 year	25 μg/m³

3.1.4.2 PM_{2.5}

Air NEPM standard.

Averaging period	Maximum concentration
1 day	25 μg/m³
	20 µg/m³ *
1 year	8 µg/m³
	7 µg/m³ *

* 2025 goal.

3.1.5 VOCs

VOCs, and specifically here non-methene VOCs, encompass a wide range of chemical compounds that behave in a similar fashion in the atmosphere. They are emitted during combustion activities, solvent use and production processes. Some species or species groups including benzene and 1,3 butadiene are considered potentially toxic to human health.

NB: Non-methane VOCs concentrations will be predicted here with specification of the predicted levels provided in the Appendix to allow comparison with impact assessment criteria provided in the *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*^[2], this document should be referenced for these criteria.

3.2 Construction phase

For the construction phase constituents of concern relate to the fugitive emission of particulates during construction activities with the criteria for the project from the Air NEPM and the NSW EPA criterion for nuisance deposition.

3.2.1 PM₁₀

Air NEPM standard.

Averaging period	Maximum concentration
1 day	50 μg/m³
1 year	25 µg/m³

3.2.2 TSP

Total Suspended Particulate Matter (TSP), NSW EPA criteria in *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*^[2].

Averaging period	Maximum concentration
1 year	90 μg/m³

3.2.3 Deposition

Deposition of insoluble solids, NSW EPA criteria in *Approved Methods for the Modelling and* Assessment of Air Pollutants in New South Wales^[2].

Maximum rate	
4 g/m ² /month	

⁵⁴²⁰_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

4 Modelling methodology

CALPUFF was utlised here for the modelling of air emissions from the New Bridgewater Bridge Project. This is a non-steady-state Lagrangian Gaussian puff model. CALPUFF employs the three-dimensional meteorological fields generated from the CALMET model by simulating the effects of time and space varying meteorological conditions on pollutant transport, transformation and removal. Emission sources can be characterised as arbitrarily-varying point, area, volume and lines or any combination of the three within the modelling domain.

4.1 **TAPM**

To generate the broad scale meteorological inputs to run CALPUFF, this study has used The Air Pollution Model (TAPM), a 3-dimensional prognostic model developed by CSIRO. The output from TAPM is used to generate the appropriate meteorological data for the CALPUFF modelling system. TAPM (v 4.0.4) was configured as follows:-

- Centre coordinates 42° 44.500 S, 147° 13.500 E (UTM coordinates 518416, 5267847)
- Dates modelled 1st January 2015 to 31st December 2015.
- Four nested grid domains of 30 km, 10 km, 3 km and 1 km.
- 41 x 41 grid points for all modelling domains.
- 30 vertical levels from 10 m to an altitude of 8000 m above sea level.
- The default TAPM databases for terrain, land use and meteorology were used in the model, including the *TasVeg250m* land use file.

4.2 CALMET

CALMET is an advanced non-steady-state diagnostic three-dimensional meteorological model with micrometeorological modules for overwater and overland boundary layers. The model is the meteorological preprocessor for the CALPUFF modelling system.

Version 6.5.0 of CALMET was used with the following key settings utlised:-

- Domain area of 170 by 170 grid cells at 200 m spacing, SW corner coordinates 501416, 5250847.
- Ten vertical levels: 20 m, 40 m, 80 m, 160 m, 320 m, 640 m, 1,200 m, 2,000 m, 3,000 m and 4,000 m.
- Dates modelled 1st January 2015 to 31st December 2015.
- No observations mode, full prognostic wind fields from TAPM (1 km domain) input as MM5/3D.dat at surface and upper air for "initial guess" field.
- No extrapolation of surface winds observations.
- All other wind field options default.
- Mixing height parameters default.
- Terrain radius of influence 7.0 km.
- 3D Relative humidity and temperature from prognostic data.
- Gridded cloud cover from prognostic RH at all levels.
- Land use data was created using generic land use codes, with editing based on comparison with aerial photographic imagery.

- Terrain data from SRTM-1 digital elevation model (30 m resolution) data produced by NASA (see figure 2-2 for details).
- No data assimilation.
- All other options default.

Figure 4-1 provides an aerial view of the study area with an overlay of generic land use categories as assigned in CALMET.

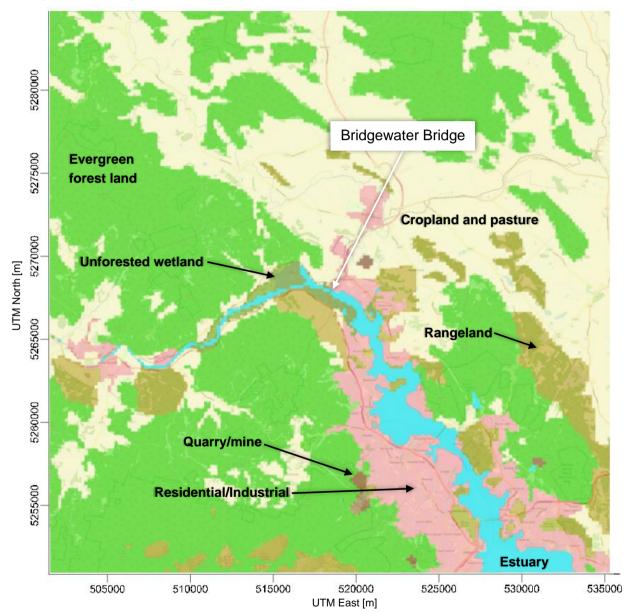


Figure 4-1: Aerial view of study area with land use overlay.

Burbury Consulting - New Bridgewater Bridge Project air emissions assessment.

4.3 CALPUFF

Version 7.2.1 of CALPUFF was used with the following key settings utlised:

- Domain as for CALMET model
- Dates modelled 1st January 2015 to 31st December 2015.
- Modelled species: CO, NOx, SO2, VOCs type: gas, concentration modelled.

 $\mathsf{PM10},\,\mathsf{PM2.5},\,\mathsf{type:}\;\mathsf{particle},\,\mathsf{concentration}\;\mathsf{modelled}\;(\mathsf{no}\;\mathsf{deposition}).$

TSP, type: particle, concentration and deposition modelled.

- Gridded 3D hourly-varying meteorological conditions generated by CALMET
- No chemical transformation modelled.
- Dispersion coefficients calculated using turbulence computed from micrometeorology with the PDF method used for sigma-z in the convective boundary layer.
- All other options default.

5 Meteorology

NB: Please note the use of letter designations for wind directions in the following subsections.

The nearest representative Bureau of Meteorology (BoM) weather station is located at Hobart (Ellerslie Road) (Station number 094029), approx. 18 km SSW of the bridge.

Figure 5-1 provides an aerial view showing the location of the Hobart (Ellerslie Road) BoM station and the Bridgewater Bridge.

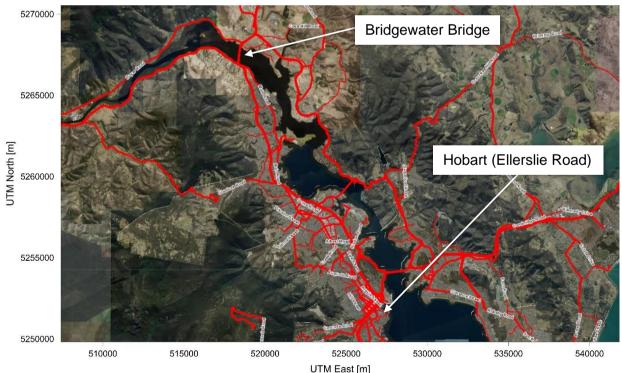


Figure 5-1: Aerial view showing the location of Hobart (Ellerslie Road) and the Bridgewater Bridge.

Long term weather data was obtained from the BoM weather station at Hobart (1882 – present) and presented in Table 5-1. The mean temperature range is between 5 and 22 °C with the coldest month being July and the hottest months being January and February. The rainfall in the region is relatively evenly distributed through the year. The mean annual rainfall is approx. 612 mm.

Climate	Climate stats - HOBART (ELLERSLIE ROAD)										
	Mean te	emp (°C)		9 a.	m. conditi	ions	3 p.	m. conditi	ons		
Month	Max.	Min.	Rainfall (mm)	Temp (°C)	RH (%)	Wind speed (km/h)	Temp (°C)	RH (%)	Wind speed (km/h)		
Jan	21.8	12.0	46.9	16.6	60	13.5	19.5	54	19.0		
Feb	21.7	12.1	39.4	16.4	64	12.0	19.7	55	17.7		
Mar	20.2	11.0	44.7	14.7	67	12.3	18.3	56	16.2		
Apr	17.4	9.0	50.0	12.4	71	12.7	15.8	59	14.5		
May	14.5	7.0	47.0	9.7	76	11.8	13.2	63	12.6		
Jun	12.0	5.2	53.8	7.4	79	11.4	10.8	67	12.2		
Jul	11.8	4.6	52.0	6.9	78	12.1	10.6	65	13.2		
Aug	13.1	5.2	54.2	8.1	73	12.6	11.9	60	14.5		
Sep	15.2	6.5	52.7	10.5	66	14.8	13.5	56	17.0		
Oct	17.0	7.8	61.2	12.5	63	15.0	15.1	56	18.0		
Nov	18.8	9.4	53.8	14.2	60	14.2	16.5	56	18.9		
Dec	20.4	10.9	56.4	15.8	60	13.8	18.1	56	19.1		
Annual	17.0	8.4	612.2	12.1	68	13.0	15.2	58	16.1		

Table 5-1: Long term climate statistics, BoM weather station HOBART (ELLERSLIE ROAD): 094029.

5.1.1 Wind rose comparison


Figure 5-2 presents average 9 am and 3 pm wind roses for the Hobart location from both the BoM weather station and CALMET model.

The 9 am BoM wind rose at Hobart shows strong NW and N wind signals with lower wind speed components from the W, SW and S. The 9 am CALMET wind rose shows a similar NW component with the N component lesser and the W, SW and S slightly more prominent.

The 3 pm BoM wind rose from Hobart shows strong NW and SE wind sector components and lesser N, W, SW and S components. A similar pattern is seen in the 3 pm CALMET wind rose with the N component lesser and the W, SW and S slightly stronger.

BoM

CALMET

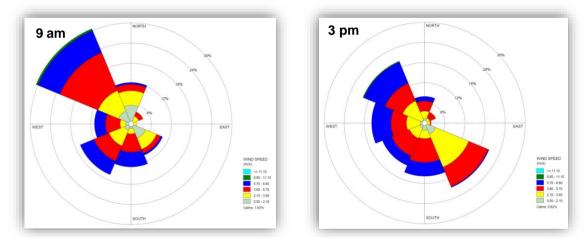
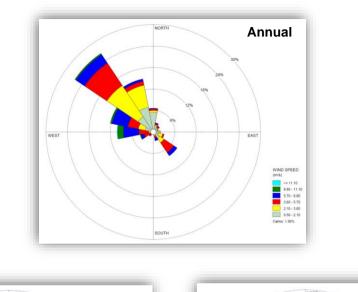



Figure 5-2: 9 am and 3 pm wind roses for Hobart.

5.1.2 CALMET meteorological outputs

5.1.2.1 Wind fields

Figure 5-3 presents an annual and seasonal CALMET wind roses from the Bridgewater Bridge site. Winds from the NW are dominant with the significant SE component present. This suggests a strong valley influence on directing winds. This is most pronounced in Autumn and Winter, westerly winds more prominent in spring and summer. High wind speeds are most frequent from the W while low wind speeds and most common from the N and NW.

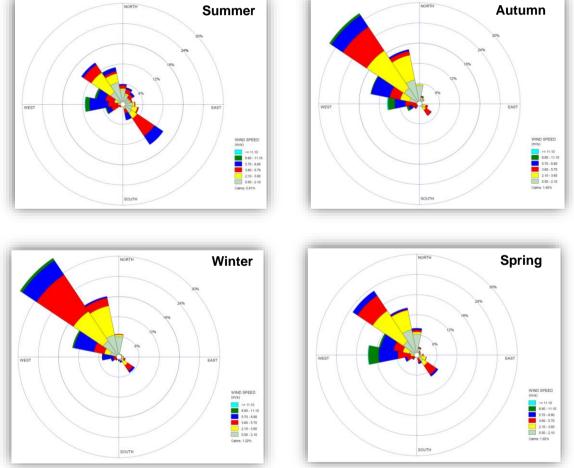
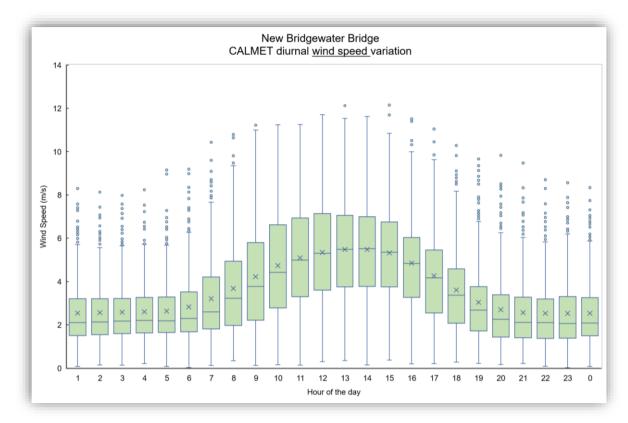
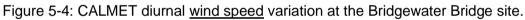




Figure 5-3: Annual and seasonal CALMET wind roses for the Bridgewater Bridge site.

Figures 5-4 and 5-5 present CALMET diurnal variation in wind speed and direction respectively at the Bridgewater Bridge site. Wind speeds are stronger and more variable during the day while the wind direction data shows winds are absent from the S and SW during the night.

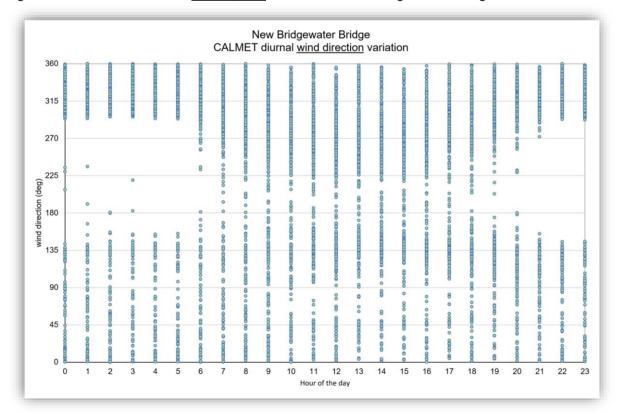
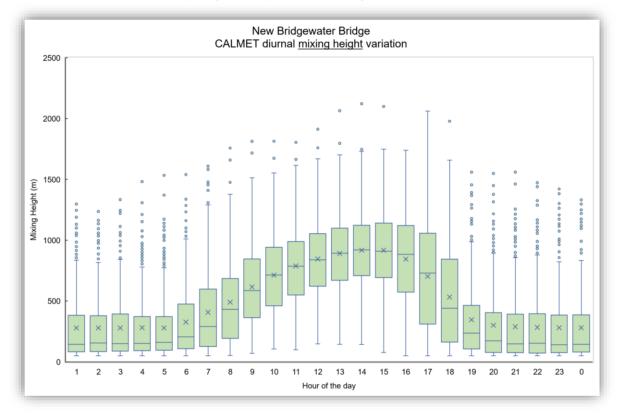
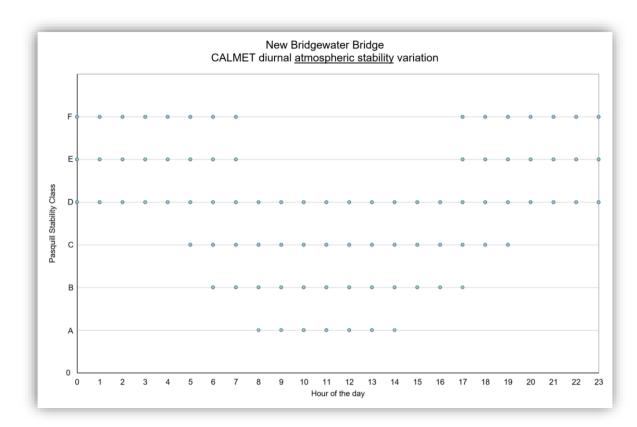


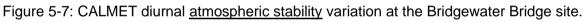
Figure 5-5: CALMET diurnal wind direction variation at the Bridgewater Bridge site.

5.1.2.2 Mixing height

The mixing height determines the height above ground that a pollutant emitted will be mixed by turbulent air flow, i.e. lower mixing height, less potential dispersion. CALMET diurnal variation in mixing height at the Bridgewater Bridge site is shown in Figure 5-6.

An increase in the mixing height is observed during the morning due to the increase in solar radiation following sunrise. Typically, maximum mixing heights occur in the mid to late afternoon and descend in the early evening. The mixing height is low during the night and higher and slightly more variable during the day under the influence of incoming solar radiation. Under these conditions dispersion is likely to generally be poor at night.


Figure 5-6: CALMET diurnal <u>mixing height</u> variation at the Bridgewater Bridge site.

5.1.2.3 Atmospheric stability

Atmospheric stability refers to the tendency of the atmosphere to lesson or augment vertical motion. Pasquill Stability Classes (stability classes A to F) categorise the degree of atmospheric stability. These classes characterise prevailing meteorological conditions and are an input into the air dispersion model. Figure 5-7 presents CALMET diurnal variation in atmospheric stability at the Bridgewater Bridge site. Table 5-2 provides the percent occurrence of each class across the modelled year along with a brief description of the class with regard to atmospheric stability.

The results in Figure 5-7 show that relatively unstable conditions are normal during the day, whilst stable to neutral conditions typically occur at night (i.e. less dispersive conditions at night). The data from Table 5-2 identifies that stability class D, representing neutral atmospheric conditions, as the most commonly occurring stability class throughout the year modelled and in combination with stability class F accounting for approx. 70 % the hours modelled.

Pasquill stability class annual occurrence						
Stability class	Description	Percent occurrence (%)				
А	Very unstable low wind, clear skies, hot daytime conditions	0.4				
В	Unstable clear skies, daytime conditions	5.6				
С	Moderately unstable moderate wind, slightly overcast daytime conditions	13.6				
D	Neutral high winds or cloudy days and nights	41.1				
E	Stable moderate wind, slightly overcast night-time conditions	10.5				
F	Very stable low winds, clear skies, cold night-time conditions	28.7				

Table 5-2: CALMET annual percent occurrence of atmospheric stability classes at the Bridgewater Bridge site.

6 Background concentrations

Information relating to the background constituent concentrations in the Derwent Valley is, to the best of Tarkarri Engineering's knowledge, not available. As such background concentration is not included in the predicted results presented here. Given this interpretation of the results should be considered in this context. Other potential sources of air emissions in the valley include transport emissions from outside of the project area; combustion processes at industrial facilities to the west at New Norfolk and to the south in Hobart; local agricultural activities; and biomass burning for heating and during bushfires.

7 Model input information

7.1 Operational phase

Vehicle emissions for the Tasmanian vehicle fleet were predicted utilising the vehicle emission modelling software package COPERT Australia, version 1.3. Input files for the current fleet (based off the most recent available data from 2018) and predicted fleet for 10 years after the completion of the project (2035) were developed by Transport Energy/Emission Research (TER). A report is available detailing the development of the input files is provided in the Appendix to this report^[3].

Vehicle speeds of 35 km/h, 75 km/h and 100 km/h were modelled to represent average vehicle speeds on roads assigned speed limits of 60 km/h, 80 km/h and 100 km/h respectively (speed limits for the new crossing options were provided by Burbury Consulting). Weighted average emissions in g/s/vehicle for an aggregation of all light vehicles (LVs) and an aggregation of all heavy vehicles (HVs) were calculated for each speed. Weighting is based on the total km travelled per year for each vehicle class within the LV and HV vehicle types (calculated from km/yr travelled by an individual vehicle of the vehicle class by the population of that vehicle class) as proportion of the total km travelled by all vehicles in the LV and HV vehicle types.

Weighted average emissions per vehicle (g/s) by vehicle type, 2021								
Canatituant	Vahiele ture	g/s/vehicle at						
Constituent	Vehicle type	35 km/h	75 km/h	100 km/h				
0	LVs	2.0 x 10 ⁻²	3.0 x 10 ⁻³	2.4 x 10 ⁻³				
СО	HVs	1.9 x 10 ⁻²	6.0 x 10 ⁻³	3.7 x 10 ⁻³				
NOx	LVs	2.0 x 10 ⁻³	9.3 x 10⁻⁴	3.7 x 10 ⁻⁴				
NOX	HVs	8.4 x 10 ⁻³	7.3 x 10 ⁻³	5.1 x 10 ⁻³				
SO ₂	LVs	3.7 x 10 ⁻⁵	1.6 x 10⁻⁵	4.9 x 10 ⁻⁶				
302	HVs	2.4 x 10 ⁻⁵	1.6 x 10⁻⁵	1.0 x 10 ⁻⁵				
PM ₁₀	LVs	2.0 x 10 ⁻⁴	8.8 x 10⁻⁵	1.7 x 10⁻⁵				
	HVs	5.2 x 10 ⁻⁴	2.8 x 10 ⁻⁴	1.3 x 10 ⁻⁴				
	LVs	1.2 x 10 ⁻⁴	5.5 x 10⁻⁵	1.3 x 10⁻⁵				
PM _{2.5}	HVs	3.8 x 10 ⁻⁴	2.1 x 10 ⁻⁴	1.1 x 10 ⁻⁴				
	LVs	2.5 x 10 ⁻³	3.9 x 10 ⁻⁴	8.1 x 10⁻⁵				
VOCs (Non-methane)	HVs	1.8 x 10 ⁻³	4.6 x 10 ⁻⁴	1.8 x 10 ⁻⁴				

Tables 7-1 and 7-2 present weighted average emission rates for LVs and HVs from the 2021 and 2035 outputs from the COPERT model at 35 km/h, 75 km/h and 100 km/h speeds.

Table 7-1: Weighted average emissions per vehicle by, vehicle type, 2021.

Weighted average emissions per vehicle (g/s) by vehicle type, 2035								
Constituent	Vahiala tuna		g/s/vehicle at					
Constituent	Vehicle type	35 km/h	75 km/h	100 km/h				
со	LVs	4.8 x 10 ⁻³	1.8 x 10 ⁻³	2.0 x 10 ⁻³				
0	HVs	1.1 x 10 ⁻²	3.1 x 10 ⁻³	2.3 x 10 ⁻³				
NOx	LVs	6.4 x 10 ⁻⁴	2.5 x 10 ⁻⁴	1.1 x 10 ⁻⁴				
NOX	HVs	2.7 x 10 ⁻³	2.2 x 10 ⁻³	1.4 x 10 ⁻³				
SO ₂	LVs	3.1 x 10⁻⁵	3.7 x 10 ⁻⁶	2.0 x 10 ⁻⁵				
302	HVs	1.4 x 10 ⁻⁵	4.4 x 10 ⁻⁷	1.6 x 10 ⁻⁵				
PM ₁₀	LVs	2.0 x 10 ⁻⁴	8.7 x 10 ⁻⁵	1.6 x 10 ⁻⁵				
FIVI ₁₀	HVs	2.9 x 10 ⁻⁴	1.7 x 10 ⁻⁴	5.9 x 10 ⁻⁵				
DM	LVs	1.1 x 10 ⁻⁴	5.2 x 10 ⁻⁵	1.2 x 10 ⁻⁵				
PM _{2.5}	HVs	1.6 x 10 ⁻⁴	9.7 x 10 ⁻⁵	3.9 x 10 ⁻⁵				
	LVs	1.4 x 10 ⁻³	2.9 x 10 ⁻⁴	6.3 x 10 ⁻⁵				
VOCs (Non-methane)	HVs	3.0 x 10 ⁻⁴	8.8 x 10 ⁻⁵	3.9 x 10⁻⁵				

Table 7-2: Weighted average emissions per vehicle, by vehicle type, 2035.

Emissions rates were calculated for each road section based on the number of LVs and HVs present on a road section per second multiplied by the per vehicle rates presented in tables 7-1 and 7-2 above. The LV and HV road section rates were then summed to form a single rate for the road section.

Traffic data for the years 2021 and 2031 (future traffic modelled year available for the project) was provided by Burbury Consulting and is presented in the Appendix. A 2:1 ratio for day and night traffic flows was assumed (from Austroads^[4]) and day flows outside of the am and pm peaks determined to allow for the calculation of emission rates per road section in g/s. Emissions were scaled on a weekly/diurnal basis in the model to account for night and am and pm peak traffic flows.

5 modelling scenarios were developed as follows:-

- <u>Existing</u> (2021 traffic data, 2018 emission data)
- New bridge, Option 1 (2021 traffic data, 2018 emission data)
- New bridge, Option 2 (2021 traffic data, 2018 emission data)
- New bridge, Option 1 (2031 traffic data, 2035 emission data)
- New bridge, Option 2 (2031 traffic data, 2035 emission data)

Traffic data utilisation, source configuration and emission rate information is provided in the subsequent report subsections. Discrete receptor locations identified for the prediction of ground level concentrations (glcs) are detailed in subsection 7.3 while subsection 7.4 presents aerial views with model overlays. The extents of road emission sources are within the Project Land with the exception of some minor road sources that extend slightly beyond.

7.1.1 Configuration data

Table 7-3 presents a table detailing the traffic count data utilisation in calculating emission rates for each road source. Emission source configuration data for Existing road sources and Option 1 and 2 road sources for the New Bridgewater Bridge are provided in Table 7-4. Location coordinates for the sources are provided in the Appendix to this report.

— — — — — — — — — —	
Traffic count data utilisation	
Emission source	Traffic count data utilised (provided in Appendix)
Existing	
Midland Hwy	E + F+ G
Midland Hwy_Bridge	E
Brooker Hwy	A
Boyer Rd	F + G
Lyell Hwy	D
Main Rd, Brooker Hwy off	C
Main Rd	В
Main Rd to Brooker Hwy on	E - D
Options 1 and 2	
Midland Hwy	E + F + G
Midland Hwy_Bridge_sth	— E*
Midland Hwy_Bridge_nth	
Brooker Hwy	A
Old Main Rd on	G/2
Old Main Rd off	G/2
Midland Hwy sth off	F
Lyell Hwy on	D/2
Lyell Hwy off	D/2
Lyell Hwy	D
Brooker Hwy sth off	С
Main Rd / Sake Rd link	В

* Split for Option 1, aggregated for Option 2.

Table 7-3: Traffic count data utilisation.

Model input source configuration data									
Line volume sources									
Emission source	Relative height (m)	Length of side (m)	Speed (km/h)	Initial sigma Z (m)	Config	Туре			
Existing									
Midland Hwy		16.5	75		Ormanitad				
Midland Hwy_Bridge		13	35						
Brooker Hwy		16.5	100						
Boyer Rd	1.19	13	35	2.38		Surface-			
Lyell Hwy	1.19	13	35	2.30	Separated	based			
Main Rd, Brooker Hwy off		9.5	35						
Main Rd		13	35						
Main Rd to Brooker Hwy on		13	35						

Emission source	Relative height (m)	Length of side (m)	Speed (km/h)	Initial sigma Z (m)	Config	Туре
Option 1						
Midland Hwy	1.19	16.5	75			
Midland Hwy_Bridge_sth	1 10 10 11 10	13	75			
Midland Hwy_Bridge_nth	1.19 to 11.19	13	75			
Brooker Hwy	1.19 to 10.33	16.5	75	2.38	Separated	Surface- based
Old Main Rd on		9.5	35			
Old Main Rd off		9.5	35			
Midland Hwy sth off		9.5	35			
Lyell Hwy on	1.10	9.5	35			
Lyell Hwy off	1.19	9.5	35			
Lyell Hwy		13	35			
Brooker Hwy sth off		9.5	35			
Main Rd / Sake Rd link		13	35			
Option 2						
Midland Hwy_Bridge	1.19 to 20.02	20	75	2.38	Separated	Surface- based

Table 7-4: Emission model input source information.

7.1.2 Emission rates

Tables 7-5 to 7-7 presents road source emission rates calculated for Existing road sources and Option 1 and 2 road sources for the New Bridgewater Bridge (both 2021 and 2031 rates for the new crossing options).

Model input source emission data, Existing (2021)									
Line volume sources									
			g	/s					
Emission source	CO	NOx	SO ₂	PM ₁₀	PM2.5	VOCs*			
Midland Hwy	4.9 x 10 ⁻²	2.3 x 10 ⁻²	2.4 x 10 ⁻⁴	1.6 x 10 ⁻³	1.1 x 10 ⁻³	5.8 x 10 ⁻³			
Midland Hwy_Bridge	1.1 x 10 ⁰	1.5 x 10⁻¹	1.9 x 10 ⁻³	1.3 x 10 ⁻²	8.2 x 10 ⁻³	1.3 x 10 ⁻¹			
Brooker Hwy	3.5 x 10 ⁻²	1.4 x 10 ⁻²	7.5 x 10⁻⁵	4.3 x 10 ⁻⁴	3.4 x 10 ⁻⁴	1.3 x 10 ⁻³			
Boyer Rd	6.1 x 10 ⁻²	6.9 x 10 ⁻³	1.1 x 10 ⁻⁴	6.6 x 10 ⁻⁴	4.0 x 10 ⁻⁴	7.5 x 10 ⁻³			
Lyell Hwy	8.1 x 10 ⁻²	9.7 x 10 ⁻³	1.5 x 10⁻⁴	9.1 x 10 ⁻⁴	5.6 x 10 ⁻⁴	1.0 x 10 ⁻²			
Main Rd, Brooker Hwy off	1.9 x 10 ⁻²	2.3 x 10 ⁻³	3.4 x 10 ⁻⁵	2.1 x 10 ⁻⁴	1.3 x 10 ⁻⁴	2.3 x 10 ⁻³			
Main Rd	3.8 x 10 ⁻²	1.9 x 10 ⁻²	1.8 x 10 ⁻⁴	1.2 x 10 ⁻³	8.3 x 10 ⁻⁴	4.4 x 10 ⁻³			
Main Rd to Brooker Hwy on	1.2 x 10 ⁻¹	1.4 x 10 ⁻²	2.1 x 10 ⁻⁴	1.3 x 10 ⁻³	8.1 x 10 ⁻⁴	1.4 x 10 ⁻²			

* Non-methane VOCs.

Table 7-5: Emission model source emission rates, Existing (2021).

Model input source emission data, Options 1 & 2 (2021)								
Line volume sources								
Emission source			g	/s				
	CO	NOx	SO ₂	PM ₁₀	PM2.5	VOCs*		
Midland Hwy	4.4 x 10 ⁻²	2.1 x 10 ⁻²	2.2 x 10 ⁻⁴	1.4 x 10 ⁻³	9.5 x 10⁻⁴	5.3 x 10 ⁻³		
Midland Hwy_Bridge ⁿ	1.1 x 10 ⁻¹	5.4 x 10 ⁻²	5.3 x 10 ⁻⁴	3.6 x 10 ⁻³	2.4 x 10 ⁻³	1.3 x 10 ⁻²		
Brooker Hwy	8.3 x 10 ⁻²	4.4 x 10 ⁻²	4.0 x 10 ⁻⁴	2.8 x 10 ⁻³	1.9 x 10 ⁻³	9.6 x 10 ⁻³		
Old Main Rd on	1.3 x 10 ⁻²	1.5 x 10 ⁻³	2.3 x 10⁻⁵	1.4 x 10 ⁻⁴	8.5 x 10⁻⁵	1.6 x 10 ⁻³		
Old Main Rd off	1.6 x 10 ⁻²	1.8 x 10 ⁻³	2.8 x 10⁻⁵	1.7 x 10⁻⁴	1.0 x 10 ⁻⁴	2.0 x 10 ⁻³		
Midland Hwy sth off	1.2 x 10 ⁻²	1.4 x 10 ⁻³	2.2 x 10⁻⁵	1.3 x 10 ⁻⁴	8.0 x 10⁻⁵	1.5 x 10 ⁻³		
Lyell Hwy on	3.6 x 10 ⁻²	4.3 x 10 ⁻³	6.4 x 10 ⁻⁵	4.0 x 10 ⁻⁴	2.5 x 10⁻⁴	4.4 x 10 ⁻³		
Lyell Hwy off	3.2 x 10 ⁻²	3.8 x 10 ⁻³	5.7 x 10⁻⁵	3.6 x 10 ⁻⁴	2.2 x 10 ⁻⁴	3.9 x 10 ⁻³		
Lyell Hwy	9.1 x 10 ⁻²	1.1 x 10 ⁻²	1.6 x 10 ⁻⁴	1.0 x 10 ⁻³	6.3 x 10 ⁻⁴	1.1 x 10 ⁻²		
Brooker Hwy sth off	1.1 x 10 ⁻²	1.3 x 10 ⁻³	1.9 x 10⁻⁵	1.2 x 10 ⁻⁴	7.3 x 10⁻⁵	1.3 x 10 ⁻³		
Main Rd / Sake Rd link	2.4 x 10 ⁻²	2.9 x 10 ⁻³	4.2 x 10⁻⁵	2.6 x 10 ⁻⁴	1.6 x 10 ⁻⁴	2.9 x 10 ⁻³		

* Non-methane VOCs. ⁶ Option 2, split between north and south directions for Option 1.

Table 7-6: Emission model source emission rates, Options 1 & 2 (2021).

Model input source emission data, Options 1 & 2 (2031)								
Line volume sources								
Emission source			g	/s				
Emission source	CO	NO _X	SO ₂	PM ₁₀	PM2.5	VOCs*		
Midland Hwy	3.2 x 10 ⁻²	7.5 x 10 ⁻³	5.7 x 10⁻⁵	1.6 x 10 ⁻³	9.5 x 10⁻⁴	4.5 x 10 ⁻³		
Midland Hwy_Bridge ⁿ	6.0 x 10 ⁻²	1.6 x 10 ⁻²	1.0 x 10 ⁻⁴	3.0 x 10 ⁻³	1.8 x 10 ⁻³	7.9 x 10 ⁻³		
Brooker Hwy	7.9 x 10 ⁻²	1.9 x 10 ⁻²	1.4 x 10 ⁻⁴	3.9 x 10 ⁻³	2.3 x 10 ⁻³	1.1 x 10 ⁻²		
Old Main Rd on	4.0 x 10 ⁻³	5.7 x 10 ⁻⁴	2.4 x 10⁻⁵	1.6 x 10⁻⁴	8.8 x 10⁻⁵	1.0 x 10 ⁻³		
Old Main Rd off	4.9 x 10 ⁻³	7.0 x 10 ⁻⁴	2.9 x 10⁻⁵	1.9 x 10⁻⁴	1.1 x 10 ⁻⁴	1.3 x 10 ⁻³		
Midland Hwy sth off	3.6 x 10 ⁻³	5.2 x 10 ⁻⁴	2.1 x 10⁻⁵	1.4 x 10 ⁻⁴	7.9 x 10⁻⁵	9.1 x 10 ⁻⁴		
Lyell Hwy on	1.2 x 10 ⁻²	1.8 x 10 ⁻³	6.9 x 10 ⁻⁵	4.7 x 10 ⁻⁴	2.6 x 10 ⁻⁴	2.9 x 10 ⁻³		
Lyell Hwy off	1.1 x 10 ⁻²	1.6 x 10 ⁻³	6.1 x 10 ⁻⁵	4.1 x 10 ⁻⁴	2.3 x 10 ⁻⁴	2.6 x 10 ⁻³		
Lyell Hwy	3.1 x 10 ⁻²	4.5 x 10 ⁻³	1.7 x 10 ⁻⁴	1.2 x 10 ⁻³	6.6 x 10 ⁻⁴	7.5 x 10 ⁻³		
Brooker Hwy sth off	2.9 x 10 ⁻³	4.3 x 10 ⁻⁴	1.6 x 10⁻⁵	1.1 x 10 ⁻⁴	6.2 x 10⁻⁵	7.0 x 10 ⁻⁴		
Main Rd / Sake Rd link	7.8 x 10 ⁻³	1.2 x 10 ⁻³	4.4 x 10⁻⁵	3.0 x 10 ⁻⁴	1.7 x 10 ⁻⁴	1.9 x 10 ⁻³		

* Non-methane VOCs. ^h Option 2, split between north and south directions for Option 1.

Table 7-7: Emission model source emission rates, Options 1 & 2 (2031).

7.2 Construction phase

Construction methods for the project are not known at the time of writing. Tarkarri Engineering was provided estimates of cut and fill volumes and areas of pavement removal and new pavement areas. From this Tarkarri Engineering calculated emissions rates for earth moving equipment utilising emission factor equations from the *National Pollutant Inventory Emission Estimation Technique Manual for Mining Version 3.1*^[4]. The following assumptions were made:-

• 0700 to 1900 hrs weekday operations (emission estimation based on 10 hrs of operation to move relevant material volumes to add level of conservatism).

NB: 24 hr hour construction operation isn't considered here. If this is proposed, then additional modelling analysis may be required to assess potential impact and this should be conducted as part of the development of any dust management plan.

- Earthworks completed in a 24-month period (project works estimated to be 32 34 months)
- Approx. 60 % of pavement removal and new pavement areas exposed with additional area for cut and fill operations.
- Movement of approx. 800 t of material per day.
- Average of 10 % moisture content for all materials moved.
- NPI level 1 watering of exposed surfaces (2 litres/m²/h)^[4] providing 50 % reduction in emission rates for trucks, dozers, graders and wind erosion (operating times only).
- 10 % silt content in all materials moved and 8 % for haul routes.

Table 7-8 presents source input information. Source name designations denote the following:

- Exca: excavator.
- FEL: front end loader.
- Dozer: bulldozer operations.
- Trucks: haul trucks.
- Wind: wind entrainment from exposed surfaces.

NB: Stockpile location and volume information wasn't available and were therefore not modelled. Stockpiles can generally be well managed if appropriately located and treated during works. It is assumed here that stockpile would be located within the Project Land at locations that provide shielding from strong winds and for fine grade materials that covering, or water sprays would be provided to minimise the potential for entrainment such that their omission from the modelling is not significant.

Deposition was calculated from the annual average deposition results for TSP and converted from $\mu g/m^2/s$.

Model input emission source data										
Volume sources										
Emission	Effective	Length of	Initial	Initial	Emission rate (kg/hr)					
source	height (m)	side (m)	sigma Y (m)	sigma Z (m)	TSP	PM ₁₀				
Exca_N_1	3	8	1.86	0.7	0.0002	0.0001				
Exca_N_2	3	8	1.86	0.7	0.0002	0.0001				
FEL_N_1	4	8	1.86	0.93	0.0002	0.0001				
FEL_N_2	4	8	1.86	0.93	0.0002	0.0001				
Exca_S_1	3	8	1.86	0.7	0.0002	0.0001				
Exca_S_2	3	8	1.86	0.7	0.0002	0.0001				
FEL_S_1	4	8	1.86	0.93	0.0002	0.0001				
FEL_S_2	4	8	1.86	0.93	0.0002	0.0001				

Line volume sources								
Emission source	Effective height	Length of side	Initial sigma Z	Con	figuration and	Emission rate (kg/hr)		
	(m)	(m)	(m)	type	TSP	PM ₁₀		
Trucks_N^	3.19	13	6.38			4.6724	1.4303	
Dozer_N	2.55	9.5	5.1		Adjacent, surfaced- based 4.6724 1.4		0.2140	
Grader_N	2.55	9.5	5.1	Adja			0.2125	
Trucks_S^	3.19	13	6.38				1.4303	
Dozer_S	2.55	9.5	5.1				0.2140	
Grader_S	2.55	9.5	5.1			0.4752	0.2125	
Area sources								
Emission source		Area (m ²) Rele		Initial sigma Z (m)	Emission rate (kg/m²/hr)		
						TSP	PM ₁₀	
Wind_N 22,771		0		1	0.00002	0.00001		
Wind_S		43,007	0		1	0.00002	0.00001	

^ Adjustment for days of rain > 0.25 mm applied in accordance with USEPA AP42^[3] with rainfall data from Low Head BoM station. On-site speed limit of 20 km/hr.

Table 7-8: Emission model source information, Construction.

7.3 Discrete receptors

28 residential receptors were identified to provide a representation of all sensitive residential premises surrounding The Project Land and location information for each is presented in Table 7-9.

Discrete receptor location coordinates (m)						
Receptor	UTM cod	ordinates	Location			
	Easting	Northing				
R1	518963	5268607	52-54 Old Main Rd, Bridgewater			
R2	519018	5268465	51 Finlay St, Bridgewater			
R3	518704	5268428	32 Old Main Rd, Bridgewater			
R4	518801	5268291	16 Hayton PI, Bridgewater			
R5	518511	5268183	1 Old Main Rd, Bridgewater			
R6	518758	5268190	10 Hayton PI, Bridgewater			
R7	518617	5268008	6 Neilson Esp, Bridgewater			
R8	518230	5266998	2 Forest Rd, Granton			
R9	518395	5266807	12 Rusts Rd, Granton			
R10	518496	5266794	7 Rusts Rd, Granton			
R11	518569	5266574	15 Dickenson Dr, Granton			
R12	518897	5266587	9 George Rd, Granton			
R13 [#]	518694	5266420	37 Black Snake Rd, Granton			
R14	518963	5266307	19 George St, Granton			
R15	518826	5266033	53 Black Snake Rd, Granton			
R16	519118	5265949	22 Laona Cr, Granton			
R17	519211	5268147	7 James PI, Bridgewater			
R18	518214	5268676	15 Serenity Dr, Bridgewater			
R19	517455	5267026	40 Turners Rd, Granton			
R20	517956	5266093	99 Forest Rd, Granton			
R21	519123	5266417	610 Main Rd, Granton			
R22	519379	5265834	536 Main Rd, Granton			
R23	520248	5267361	6 Broadview Cr, Bridgewater			
R24	516954	5267804	46 Atkins Rd, Granton			
R25	518301	5269593	50 Cobbs Hill Rd, Bridgewater			
R26	518921	5267878	40 Gunn St, Bridgewater			
R27	520380	5267892	24 Albion Rd, Bridgewater			
R28	518747	5266783	650 Main Rd, Granton			

Receptors within The Project Land. # Receptor to be demolished.

Table 7-9: Discrete (residential) receptor model location information.

7.4 Aerial views

Figure 7-1 to 7-3 show aerial views with the road emission source locations marked (major highway sources red, minor road sources in orange). Figure 7-4 shows an aerial view with construction emission source locations marked. Figure 7-5 and 7-6 present aerial views with the locations of the 27 discrete receptors marked.

Burbury Consulting – New Bridgewater Bridge Project air emissions assessment.

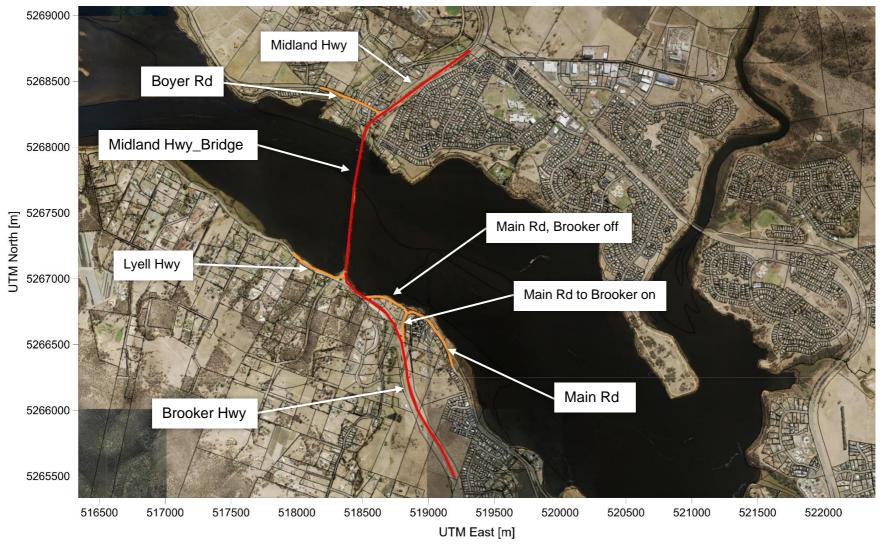


Figure 7-1: Aerial view showing emission source locations, Existing.

5420_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

Burbury Consulting – New Bridgewater Bridge Project air emissions assessment.

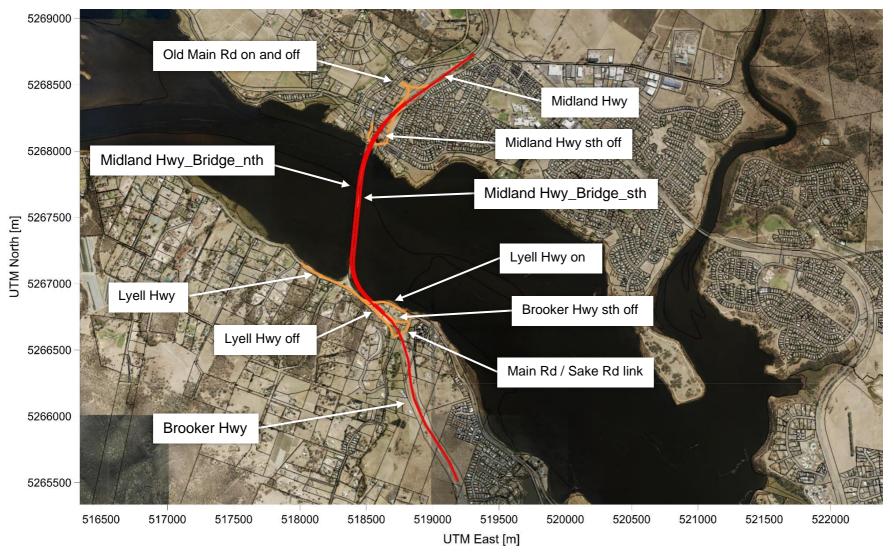


Figure 7-2: Aerial view showing emission source locations, Option 1.

⁵⁴²⁰_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

Burbury Consulting - New Bridgewater Bridge Project air emissions assessment.

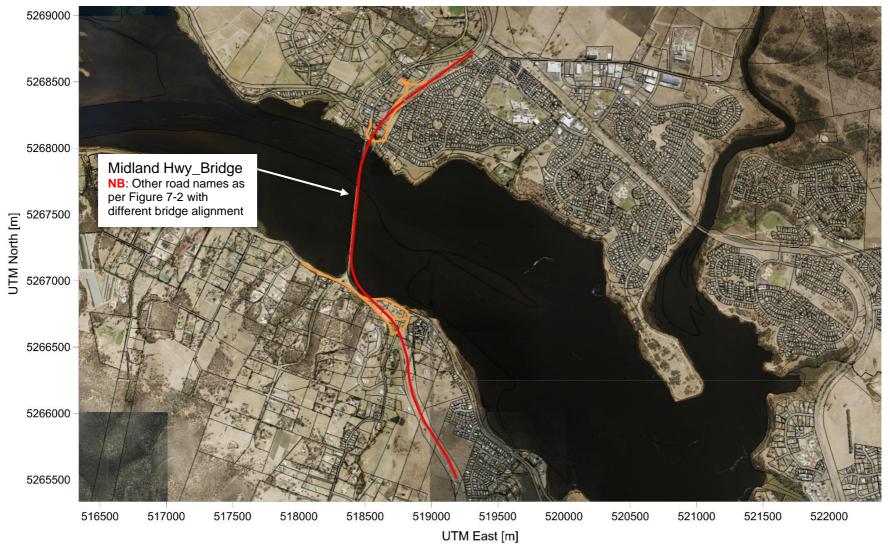


Figure 7-3: Aerial view showing emission source locations, Option 2.

5420_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

Burbury Consulting – New Bridgewater Bridge Project air emissions assessment.

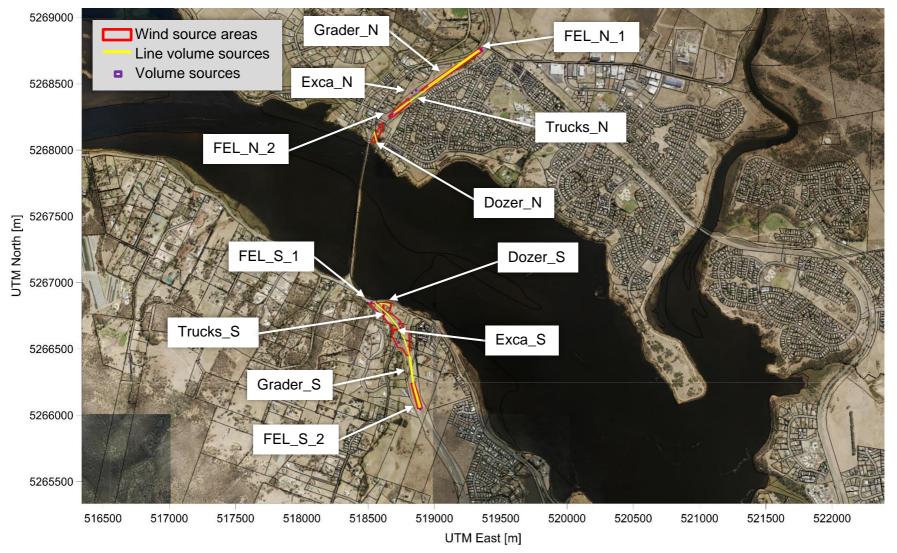


Figure 7-4: Aerial view showing emission source locations, Construction.

5420_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

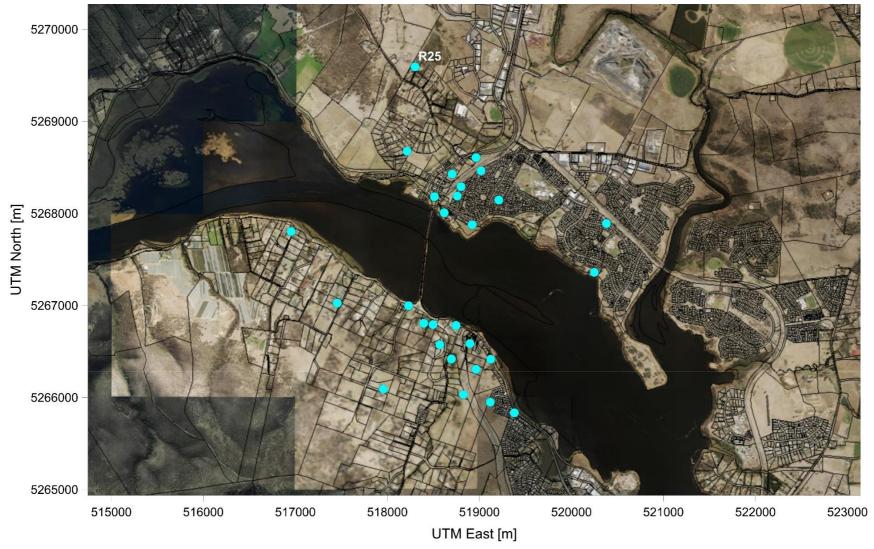


Figure 7-5: Aerial view showing discrete receptor locations.

5420_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

Burbury Consulting - New Bridgewater Bridge Project air emissions assessment.

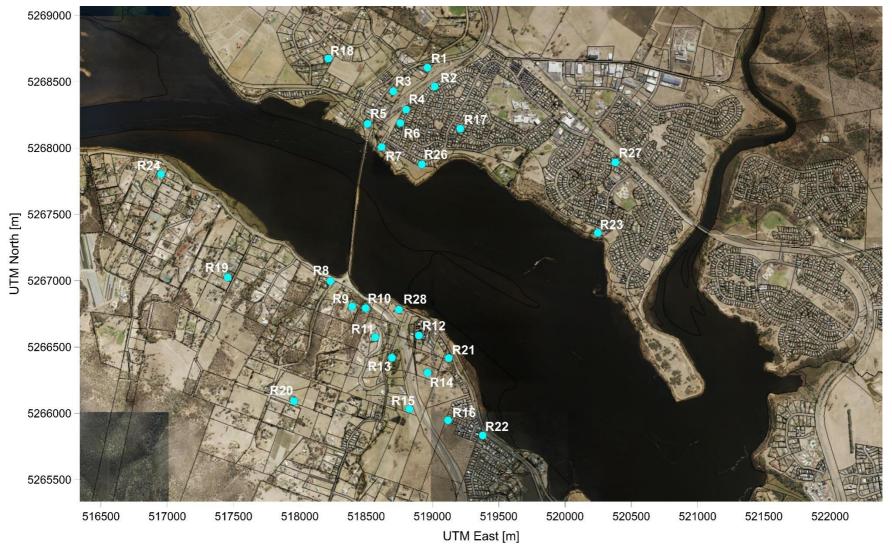


Figure 7-6: Aerial view showing discrete receptor locations

5420_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

8 Modelling results

Dispersion modelling of air emissions from New Bridgewater Bridge Project has been undertaken in accordance with the *Tasmanian Air Dispersion Modelling Guidelines*, utilising model set up parameters outlined in section 4 of this report, to assess the predicted 99.9th percentile ground level concentrations (glcs) (for averaging periods of less than 1 yr) and annual average glcs.

8.1 Operational phase

Results at each of the 28 discrete receptors are presented in Tables 8-1 to 8-5 in subsections below. Where a criteria level is exceeded, the value predicted is highlighted in pink. Speciation of VOCs for the highest predicted glc at any receptor under each scenario is presented in the Appendix for reference (specification is based on the non-methane VOC speciation in the COPERT outputs).

8.1.1 2021

D	СО	NC	D ₂ *	S	O ₂	PN	/I 10	PN	A _{2.5}	VOCsh
Receptor	8 hr	1 hr	1 yr	1 hr	24 hr	24 hr	1 yr	24 hr	1 yr	1 hr
R1	10.4	5.7	0.3	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	2.4
R2	14.3	8.7	1.0	0.1	< 0.05	0.2	0.1	0.1	< 0.05	2.7
R3	39.9	11.9	0.4	0.2	< 0.05	0.3	< 0.05	0.2	< 0.05	9.3
R4	61.0	15.2	1.1	0.2	< 0.05	0.3	0.1	0.2	0.1	11.9
R5	138.6	35.7	1.6	0.5	0.2	1.2	0.1	0.7	0.1	32.2
R6	49.4	12.3	0.8	0.2	0.1	0.3	0.1	0.2	< 0.05	9.3
R7	111.9	25.5	2.0	0.3	0.1	0.8	0.2	0.5	0.1	22.9
R8	73.1	16.6	0.9	0.2	0.1	0.5	0.1	0.3	< 0.05	14.1
R9	32.5	8.7	0.4	0.1	< 0.05	0.3	< 0.05	0.2	< 0.05	6.7
R10	37.4	8.7	0.5	0.1	< 0.05	0.3	< 0.05	0.2	< 0.05	6.0
R11	14.2	4.1	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	2.9
R12	41.2	11.8	1.1	0.1	0.1	0.3	0.1	0.2	0.1	8.1
R13 [#]	10.2	4.4	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	2.3
R14	16.8	6.3	0.5	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	2.6
R15	7.1	3.0	0.2	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	1.4
R16	10.5	3.6	0.3	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.7
R17	10.9	2.5	0.1	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	1.9
R18	8.5	2.6	0.1	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	2.2
R19	9.3	2.0	0.1	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	1.6
R20	3.1	0.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R21	28.1	7.4	0.7	0.1	< 0.05	0.2	0.1	0.1	< 0.05	5.4
R22	13.0	3.0	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.9
R23	16.9	3.5	0.1	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	2.8
R24	11.5	2.7	0.1	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	2.1
R25	2.6	0.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.5
R26	35.5	8.1	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	7.0
R27	6.1	1.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.3
R28	45.1	14.7	1.5	0.2	0.1	0.4	0.1	0.3	0.1	9.3

Exceeds criteria level. * As 100 % of NO_x. ^h Non-methane VOCs, speciation provided in appendix.

Receptor within The Project Land. # Receptor to be demolished.

Table 8-1: Discrete receptor location glc values, Existing 2021.

Discrete	receptor	locatior	n glcs (µ	g/m³) O	ption 1,	2021				
Receptor	СО	NC) 2*	S	D 2	PN	/ 10	PN	1 2.5	VOCsh
Receptor	8 hr	1 hr	1 yr	1 hr	24 hr	24 hr	1 yr	24 hr	1 yr	1 hr
R1	9.2	5.9	0.3	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	2.0
R2	11.6	8.9	1.1	0.1	< 0.05	0.2	0.1	0.1	< 0.05	2.6
R3	18.4	7.1	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	3.6
R4	22.8	9.4	0.9	0.1	< 0.05	0.3	0.1	0.2	< 0.05	3.9
R5	12.0	6.0	0.2	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.7
R6	16.9	6.6	0.5	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.7
R7	16.2	7.1	0.6	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	3.4
R8	44.6	12.3	0.9	0.2	0.1	0.4	0.1	0.3	< 0.05	8.5
R9	19.0	6.8	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	4.3
R10	26.6	8.8	0.5	0.1	< 0.05	0.3	< 0.05	0.2	< 0.05	5.2
R11	8.1	4.4	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.7
R12	27.2	10.2	1.0	0.1	< 0.05	0.3	0.1	0.2	< 0.05	5.7
R13 [#]	9.9	8.3	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.1
R14	14.0	10.1	0.9	0.1	< 0.05	0.2	0.1	0.1	< 0.05	2.5
R15	6.9	5.4	0.3	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.2
R16	7.3	6.2	0.5	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	1.4
R17	3.1	1.5	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R18	2.4	1.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.5
R19	2.7	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4
R20	0.9	0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2
R21	11.0	5.4	0.5	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	2.3
R22	5.7	3.6	0.3	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.0
R23	4.4	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.8
R24	2.8	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R25	0.7	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1
R26	6.8	3.2	0.1	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	1.2
R27	1.7	0.9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4
R28	36.7	10.9	1.3	0.1	0.1	0.4	0.1	0.2	0.1	7.7

Exceeds criteria level. * As 100 % of NO_x. ^h Non-methane VOCs, speciation provided in appendix.

Receptor within The Project Land. [#] Receptor to be demolished.

Table 8-2: Discrete receptor location glc values, Option 1, 2021.

Deserter	со	NC	D 2*	S	D ₂	PN	/I 10	PN	1 2.5	VOCsh
Receptor	8 hr	1 hr	1 yr	1 hr	24 hr	24 hr	1 yr	24 hr	1 yr	1 hr
R1	9.2	5.9	0.3	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	2.0
R2	11.6	8.9	1.1	0.1	< 0.05	0.2	0.1	0.1	< 0.05	2.6
R3	18.2	6.8	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	3.5
R4	22.7	9.4	0.9	0.1	< 0.05	0.3	0.1	0.2	< 0.05	3.9
R5	12.1	5.6	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.7
R6	16.8	6.5	0.5	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.7
R7	16.1	6.1	0.5	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	3.4
R8	40.5	9.2	0.8	0.1	0.1	0.4	0.1	0.2	< 0.05	8.1
R9	18.7	6.9	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	4.1
R10	25.6	8.2	0.5	0.1	< 0.05	0.2	< 0.05	0.2	< 0.05	5.1
R11	8.1	4.4	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.7
R12	27.5	10.3	1.0	0.1	< 0.05	0.3	0.1	0.2	< 0.05	5.8
R13 [#]	9.9	8.3	0.3	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.0
R14	13.9	10.1	0.9	0.1	< 0.05	0.2	0.1	0.1	< 0.05	2.5
R15	6.9	5.4	0.3	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.2
R16	7.3	6.2	0.5	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	1.4
R17	3.2	1.5	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R18	2.5	1.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.5
R19	2.8	1.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4
R20	0.9	0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2
R21	11.2	5.5	0.5	0.1	< 0.05	0.1	< 0.05	0.1	< 0.05	2.3
R22	5.7	3.6	0.3	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.0
R23	4.5	2.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.8
R24	2.9	1.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R25	0.7	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1
R26	6.5	3.0	0.1	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	1.1
R27	1.7	0.9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4
R28	36.7	10.6	1.2	0.1	0.1	0.4	0.1	0.2	0.1	7.5

Exceeds criteria level. * As 100 % of NO_x. ^h Non-methane VOCs, speciation provided in appendix.

Receptor within The Project Land. [#] Receptor to be demolished.

Table 8-3: Discrete receptor location glc values, Option 2, 2021.

8.1.2 2031

_	СО	N) ₂ *	S	O ₂	PN	/I 10	PN	A _{2.5}	VOCsh
Receptor	8 hr	1 hr	1 yr	1 hr	24 hr	24 hr	1 yr	24 hr	1 yr	1 hr
R1	6.4	2.1	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.5
R2	7.7	3.2	0.4	< 0.05	< 0.05	0.2	0.1	0.1	< 0.05	2.0
R3	8.9	2.6	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	2.6
R4	11.8	3.4	0.3	0.1	< 0.05	0.3	0.1	0.2	< 0.05	2.9
R5	6.0	2.2	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.9
R6	8.7	2.4	0.2	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	2.0
R7	8.0	2.7	0.2	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	2.4
R8	17.7	4.7	0.4	0.1	0.1	0.5	0.1	0.3	< 0.05	5.6
R9	8.2	2.6	0.1	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.9
R10	11.0	3.3	0.2	0.1	< 0.05	0.3	< 0.05	0.2	< 0.05	3.6
R11	4.8	1.6	0.1	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.2
R12	11.7	3.8	0.4	0.1	< 0.05	0.3	0.1	0.2	< 0.05	3.9
R13 [#]	6.8	3.0	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.6
R14	8.8	3.6	0.3	< 0.05	< 0.05	0.2	0.1	0.1	< 0.05	2.0
R15	4.9	1.9	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.0
R16	4.7	2.2	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.1
R17	1.7	0.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4
R18	1.3	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
R19	1.4	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
R20	0.4	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2
R21	5.6	2.0	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.7
R22	3.2	1.3	0.1	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	0.8
R23	2.3	0.7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R24	1.5	0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.5
R25	0.4	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1
R26	3.8	1.2	0.1	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	0.9
R27	0.9	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
R28	14.1	4.2	0.5	0.1	< 0.05	0.4	0.1	0.2	0.1	5.2

Exceeds criteria level. * As 100 % of NO_x. ^h Non-methane VOCs, speciation provided in appendix.

Receptor within The Project Land. # Receptor to be demolished.

Table 8-4: Discrete receptor location glc values, Option 1, 2031.

Deserts	со	N	D 2*	S	D ₂	PN	/ 10	PN	1 2.5	VOCsh
Receptor	8 hr	1 hr	1 yr	1 hr	24 hr	24 hr	1 yr	24 hr	1 yr	1 hr
R1	6.4	2.1	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.5
R2	7.7	3.2	0.4	< 0.05	< 0.05	0.2	0.1	0.1	< 0.05	2.0
R3	8.8	2.5	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	2.5
R4	11.7	3.4	0.3	0.1	< 0.05	0.3	0.1	0.2	< 0.05	2.9
R5	5.9	2.0	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.9
R6	8.7	2.4	0.2	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	2.0
R7	6.9	2.2	0.2	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	2.2
R8	15.0	3.7	0.3	0.1	0.1	0.4	0.1	0.2	< 0.05	5.4
R9	8.0	2.7	0.1	0.1	< 0.05	0.2	< 0.05	0.1	< 0.05	2.7
R10	10.6	3.1	0.2	0.1	< 0.05	0.3	< 0.05	0.2	< 0.05	3.5
R11	4.8	1.6	0.1	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.2
R12	11.5	3.8	0.4	0.1	< 0.05	0.3	0.1	0.2	< 0.05	3.9
R13 [#]	6.8	3.0	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.6
R14	8.9	3.6	0.3	< 0.05	< 0.05	0.2	0.1	0.1	< 0.05	2.0
R15	4.9	1.9	0.1	< 0.05	< 0.05	0.2	< 0.05	0.1	< 0.05	1.0
R16	4.7	2.2	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.1
R17	1.8	0.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4
R18	1.4	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
R19	1.5	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
R20	0.4	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2
R21	5.6	2.0	0.2	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	1.7
R22	3.2	1.3	0.1	< 0.05	< 0.05	0.1	< 0.05	0.1	< 0.05	0.8
R23	2.3	0.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.6
R24	1.6	0.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.5
R25	0.4	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1
R26	3.6	1.1	< 0.05	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	0.8
R27	0.9	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
R28	13.9	4.0	0.5	0.1	< 0.05	0.4	0.1	0.2	0.1	5.0

Exceeds criteria level. * As 100 % of NO_x. ^h Non-methane VOCs, speciation provided in appendix.

Receptor within The Project Land. [#] Receptor to be demolished.

Table 8-5: Discrete receptor location glc values, Option 2, 2031.

8.2 Construction phase

Results at each of the 27 discrete receptors are presented in Tables 8-6 below. Where a criteria level is exceeded, the value predicted is highlighted in pink.

· ·	ocation glcs (μg/m ³) Consti PM		TSP	
Receptor	24 hr	1 yr	1	
R1	20.9	2.5	1 yr 2.7	
R2	32.4	13.0	20.1	
R3	17.9	2.0	2.2	
R4	23.8	7.4	11.4	
	17.4	2.1	3.3	
R5	16.6	3.6	3.6	
R6	36.8	9.5	13.2	
R7	12.8	1.0	0.4	
R8	12.0	1.3	0.4	
R9	33.6	2.9	2.9	
R10	14.7	1.6	1.5	
R11				
R12	49.9	14.9	16.2	
R13 [#]	22.7	2.4	2.8	
R14	24.6	5.2	6.6	
R15	12.4	1.0	1.3	
R16	9.9	1.7	1.0	
R17	2.5	0.5	0.3	
R18	2.9	0.2	0.1	
R19	1.9	0.1	< 0.05	
R20	1.8	0.1	< 0.05	
R21	20.7	5.7	3.1	
R22	7.1	1.2	0.4	
R23	2.1	0.2	0.1	
R24	2.4	0.2	< 0.05	
R25	0.9	0.1	< 0.05	
R26	4.6	0.8	0.3	
R27	1.1	0.1	< 0.05	
R28	77.7	21.8	28.5	

Exceeds criteria level. Receptor within The Project Land. # Receptor to be demolished.

Table 8-6: Discrete receptor location glc values, Construction.

NB: Modelled dust deposition rates were negligible and are not reported here.

9 Discussion and conclusions

9.1 Operational phase

Predicted air emission glcs from both the existing and new crossing are well below Air NEPM standard criterion levels by an order of magnitude or more, including VOCs of concern (see Appendix for predicted values speciation).

The highest predicted levels are apparent at receptors in the immediate vicinity of the highway corridor under all modelling scenarios. Under the Existing model scenario predicted levels at receptors closest the existing bridge and causeway exhibit the highest predicted levels in any of the modelled scenarios. The two new crossing options provide traffic flows at higher speeds resulting in a significant decrease in predicted glcs, in the order of 10 to 90 % reductions on predicted levels under the Existing scenario (for 2021 modelling). Increases from the Existing scenario in some constituents are seen at receptors in the vicinity of the Brooker Hwy section (from very low levels). Speed reduced under the new crossing options result in higher emission rates from this road section under scenarios Options 1 (2021) and Option 2 (2021) than under the Existing scenario.

NB: The Brooker Hwy section, while modelled as a 100 km/h section under the Existing scenario, has the potential to be subject to reduced traffic speeds during peak traffic periods and as such the modelling may underestimate current traffic air emission glcs in the vicinity of this road section. As such the new crossing options may, in reality, result in reduced glcs in the vicinity of this section as a result of improved traffic flows and road gradient.

Further to the above the traffic assessment notes that the following improvements resulting from the project that would act to mitigate the generation of traffic air emissions:

- Reduction in congestion: The introduction of grade-separation to the southern and northern interchanges significantly improves congestion. This is also supported by a change from 2lanes to 4-lanes of traffic. The removal of the roundabout at the intersection of the Brooker/Lyell Highway and the causeway is the most significant of those changes. Congestion is improved such that free flow traffic conditions are provided by the New Bridgewater Bridge. A reduction in congestion removes vehicles that sit idling for long periods of time, particularly at peak traffic times.
- Increased travel speed / reduced travel time: A reduction in travel time or an increase in average travel speed is provided. The afternoon/evening peak travel time is modelled at 7.6 minutes for northbound traffic at present time. In future years, this is forecast to increase to 27.4 minutes under the current bridge configuration. Travel time with the new bridge is forecast at 1.7 minutes.
- Average speed increases: The posted speed limit will increase from a minimum of 60 km/h through the main crossing to 80 km/h throughout. Average travel speed increases from 24 km/h to 76 km/h (across a year). Rates of air emissions are reduced at higher speeds.
- Alternative modes of transport: Pedestrians and cyclists will now be able to cross the river here in a protected share user path. This is the first time that this is possible at this location, and it is expected to encourage a shift in mode of transport.

Results from the modelling of 2031 traffic levels shows a further reduction in predicted levels despite increased traffic flows. This is due to lower emission level inputs from the COPERT modelling of the Tasmanian 2035 road fleet (details provided in the TER report^[3]). Turnover and scrappage of old vehicle technologies and a greater proportion of modern vehicles sees significantly reduced weighted average emissions from LVs and HVs (see Table 7-2).

The above modelling results suggests that the New Bridgewater Bridge Project when completed and operational should result in improved outcomes with regard to air emissions from vehicle traffic within The Project Land while improved vehicle technologies into the future should see a continued reduction in the emission of air emission constituents of concern.

NB: The modelling completed here doesn't account for any potential conversion of the on-road Tasmanian vehicle fleet to electric vehicles (for LVs in particular) or hydrogen vehicles (for HVs in particular) into the future, both of which would act to further reduce traffic emission levels.

9.2 Construction phase

Predicted TSP and PM₁₀ levels from the modelling of construction phase operations are typically below criteria levels. This indicates that the controls outlined in section 7.2 are likely to be sufficient in maintaining acceptable air quality conditions for surrounding residences during the project construction phase. The exception is at receptor R28 while at receptor R12 PM₁₀ levels are very close to the criteria level. This area is near interchanges for the Lyell Hwy and Main Rd / Snake Rd and on the predominant downwind side of these areas (modelled as areas of significant exposed surface during construction). As such additional controls are likely to be required for works on the southern side of the Derwent River to maintain acceptable air quality conditions near interchange works.

National Pollution Inventory (NPI) level 1 watering of exposed surfaces (2 litres/m²/h)^[4] along with the locating of material stockpiles in wind protected areas and covering or provision of water sprays for fine grade material stockpiles are critical controls for this project. Works on the southern side of the Derwent River are likely to involve the exposure of larger areas of surface during the construction of interchanges. Consideration should also be given to minimising exposed surfaces in this area and progressive rehabilitation (e.g. hydromulching or surface matting to bind surfaces and subsequent revegetation) as works progress. Increased watering rates, particularly for designated haul routes may also need to be considered (i.e. NPI level 2 watering (>2 litres/m²/h)^[4])

A dust management plan should be prepared prior to the commencement of construction. The should set out detailed dust management measures, responsibilities, key personnel, monitoring, adaptive management and community engagement. Management measures are likely to include the following (as a minimum):

- Minimising exposed surfaces through construction planning and progressive rehabilitation (e.g. hydromulching or surface matting to bind surfaces and subsequent revegetation).
- Watering of exposed surface at a minimum rate of NPI Level 1 (2 litres/m²/h) with some areas on the southern side of the Derwent and along designated haul roads watered at a higher rate, nominally NPI Level 2 (>2 litres/m²/h).
- Provision of adequate water supply to maintain watering rates (except during rain events) and provide water for spray systems.
- Locating stockpiles in wind protected areas and either covering or using water sprays to control dust generation.
- Covering of all haul loads.

Once the construction approach is known additional management measures may be applicable.

To provide a measure of the effectiveness of dust management measures and to allow for management to be adjusted, a dust monitoring program is proposed. The dust monitoring program

would be documented in the dust management plan (or elsewhere in the construction environmental management documentation) and should include:

- Monitoring to continue throughout the active construction period.
- Establishment of performance criteria to be used to inform adaptive management approaches during construction (See section 3 of this report).
- Regular assessment of monitoring results by a suitably qualified professional including comparison against background levels and performance criteria.
- Protocols for adjustments to the dust control measures where dust levels exceed adopted performance criteria as a result of construction activity within the Project Land.

NB: Further detailed on the air quality monitoring program proposed for the project is provided in section 9.3.

With suitable management measures, monitoring and adaptive management in place air emissions during the construction phase can be suitably managed to avoid significant impact on local amenity.

9.3 Air quality monitoring program

Air quality monitoring would be conducted in stages through pre-construction, construction and post construction to allow for compliance assessment; to provide information to the project for the adaptive management of air quality; and allow for model analysis and validation against real data. The monitoring would take the following forms:

- Air quality monitoring station (AQMS) at a fixed location
- Dust deposition monitoring (throughout the entire construction period)

For the AQMS the following sampling periods are proposed:

- <u>Pre-construction</u>: 3 months prior to construction
- <u>Construction</u>: first 3 months and final 3 months
- <u>Post-construction</u>: first 6 months

9.3.1 AQMS

The following constituents would be monitored by the AQMS to reference standards:

- Oxides of Nitrogen NO_X (Measured to the standard of AS 3580.5.1-2011 Methods for sampling and analysis of ambient air Determination of oxides of nitrogen - Direct-reading instrumental method)
- Particulates PM₁₀ & PM_{2.5} (Measured to the standard of AS/NZS 3580.9.11.2016 Methods for sampling and analysis of ambient air Determination of suspended particulate matter - PM₁₀ beta attenuation monitors and AS/NZS 3580.9.12:2013 Methods for sampling and analysis of ambient air Determination of suspended particulate matter - PM_{2.5} beta attenuation monitors)
- Meteorological parameters:
 - Wind Speed / Wind Direction
 - Ambient Temperature
 - Relative Humidity
 - Barometric Pressure
 - o **Rain**
 - Solar Radiation

The AQMS would be located at the The Project Land at 650 Main Rd, Granton. This location is on the eastern side of the bridge (the predominant down wind side of the bridge) and provides a location with access to power and is free from construction activity.

Figure 9-1 provides an aerial view with the The Project Land extent (in turquoise) and 650 Main Rd, Granton (in red), highlighted.

Figure 9-1: Aerial view with proposed AQMS location and The Project Land extent highlighted.

9.3.2 Dust deposition

Dust deposition monitoring would be conducted throughout the construction period in accordance with AS/NZS 3580.10.1:2016 Methods for sampling and analysis of ambient air Determination of particulate matter - Deposited matter - Gravimetric method.

It is anticipated that between 8-10 deposition gauge locations would be utilised (this may change depending on the proposed construction program) with the siting of the gauges in accordance with *AS/NZS 3580.1.1:2016 Methods for sampling and analysis of ambient air Guide to siting air monitoring equipment.*

9.3.3 Monitoring results

Monitoring results from the AQMS would be reported to the Department of State Growth on a monthly basis. During the construction phase this information would also be provided to the construction contractor. Dust deposition monitoring would be conducted by the construction contractor with the results provided to the Department of State Growth on a monthly basis also.

The information would be used for the adaptive management of dust emission control during construction where performance criteria are exceeded (e.g. consideration of alternative construction techniques that produce less emission of dust, relocation of dust generating activities

away from sensitive locations, increased suppression such as higher water rates of exposed surfaces... etc). Following completion of the monitoring the pre and post construction monitor data would be used to verify the modelling results presented here.

Lyell Hwy

Appendix

Source location coordinates

Operational phase Emission source location coordinates, Existing UTM node coordinates **Emission source** (line-volume sources) X 10asting Northing Midland Hwy Midland Hwy_Bridge **Brooker Hwy** Boyer Rd

		1
	518534	5266862
	518624	5266865
	518673	5266858
Main Rd, Brooker Hwy off	518703	5266841
	518767	5266802
	518816	5266776
	518832	5266750
	518369	5267040
	518378	5266972
	518447	5266902
Main Rd	518569	5266822
	518678	5266739
	518740	5266649
	518793	5266523
	518809	5266443
	519182	5266334
	519152	5266443
	519110	5266528
	519049	5266612
	519001	5266679
	518952	5266718
Main Rd to Brooker Hwy on	518909	5266736
	518879	5266748
	518842	5266742
	518828	5266723
	518815	5266687
	518802	5266635
	518805	5266581
	518812	5266527

Emission source location coordinates, Options 1 and 2								
Emission source		coordinates ne sources)	Relative height (m)					
	X 10asting	Northing						
Midland Lhus	519309	5268729						
Midland Hwy	518809	5268369						
	518798	5268356	1.19					
	518762	5268328	1.19					
	518725	5268295	1.19					
	518670	5268240	5.19					
	518637	5268200	7.19					
	518598	5268144	9.19					
	518545	5268053	11.19					
	518513	5267976	11.19					
	518494	5267922	9.19					
	518477	5267850	7.19					
	518463	5267753	7.19					
Midland Hwy_Bridge_sth	518446	5267584	7.19					
(Option 1)	518435	5267479	7.19					
	518427	5267396	7.19					
	518416	5267290	7.19					
	518407	5267193	7.19					
	518404	5267146	7.19					
	518407	5267104	7.19					
	518418	5267055	8.19					
	518433	5267013	9.19					
	518459	5266964	9.19					
	518499	5266914	9.19					
	518549	5266864	10.19					
	518610	5266803	10.19					
	518627	5266785	10.19					

	516794	5206504	1.19
	518755	5268334	1.19
	518720	5268304	1.19
	518689	5268275	2.19
	518646	5268228	6.19
	518616	5268193	7.19
	518573	5268131	10.19
	518549	5268092	11.19
	518522	5268041	11.19
	518497	5267983	10.19
	518476	5267929	8.19
	518458	5267862	6.19
	518447	5267797	4.19
	518440	5267744	2.19
Midland Hwy_Bridge_nth	518435	5267695	1.19
(Option 1)	518432	5267670	1.19
	518389	5267248	1.19
	518384	5267201	1.19
	518383	5267162	1.19
	518388	5267108	2.19
	518399	5267057	4.19
	518417	5267009	4.19
	518446	5266958	6.19
	518472	5266923	6.19
	518501	5266893	10.19
	518526	5266869	10.19
	518560	5266836	10.19
	518597	5266801	9.69
	518621	5266777	10.19
	518631	5266774	10.33
	518692	5266715	11.93
	518738	5266649	7.53
	518770	5266578	3.15
	518816	5266425	1.19
Brooker Hwy	518833	5266260	1.19
,	518858	5266138	1.19
	518906	5266024	1.19
	518950	5265931	1.19
	519098	5265703	1.19
	519130	5265647	1.19
	519188	5265516	1.19
	518768	5268518	
	518780	5268507	
	518841	5268484	
Old Main Rd on			
	518882	5268477	
	518933	5268484	
	518962	5268496	

5268364

1.19

	518722	5268317	
	518815	5268427	
Old Main Rd off	518819	5268460	
	518807	5268486	
	518769	5268511	
	518770	5268324	
	518736	5268289	
	518707	5268249	
	518685	5268205	
	518667	5268151	
	518658	5268096	
	518654	5268059	
	518627	5268057	
Midland Hwy sth off	518583	5268050	
	518558	5268058	
	518535	5268069	
	518520	5268082	
	518514	5268101	
	518518	5268120	
	518532	5268154	
	518542	5268181	
	518545	5268212	
	518828	5266736	
	518817	5266762	
	518804	5266777	
	518743	5266814	
	518684	5266847	
	518651	5266858	
Lyell Hwy on	518628	5266863	
	518600	5266861	
	518562	5266859	
	518523	5266863	
	518477	5266880	
	518464	5266886	
	518461	5266883	
	518502	5266850	
	518542	5266817	
	518612	5266745	
Lyell Hwy off	518655	5266701	
	518680	5266670	
	518691	5266643	
	518695	5266613	
	518460	5266887	
	518423	5266918	
	518401	5266938	
	518342	5266976	
Lyell Hwy	518280	5267005	
	518216	5267032	
	518086	5267098	
	518011	5267154	
	010011	0207104	I

	518647	5266776	
	518681	5266746	
Dreeker Live oth off	518705	5266727	
Brooker Hwy sth off	518728	5266715	
	518762	5266709	
	518812	5266715	
	518824	5266703	
	518813	5266670	
Main Rd / Sake Rd link	518784	5266634	
	518742	5266613	
	518711	5266600	
	518789	5268351	1.19
	518709	5268290	1.19
	518633	5268203	6.22
	518567	5268112	10.36
	518527	5268037	13.59
	518496	5267952	17.62
	518472	5267881	18.3
	518458	5267806	19.63
	518443	5267654	20.02
Midland Hwy_Bridge	518417	5267397	20.19
(Option 2)	518404	5267265	18.19
	518396	5267183	18.03
	518396	5267139	17.98
	518402	5267089	17.78
	518412	5267051	17.55
	518441	5266978	16.71
	518494	5266909	16.26
	518551	5266853	12.49
	518612	5266795	8.25
	518629	5266781	10.35

Construction phase

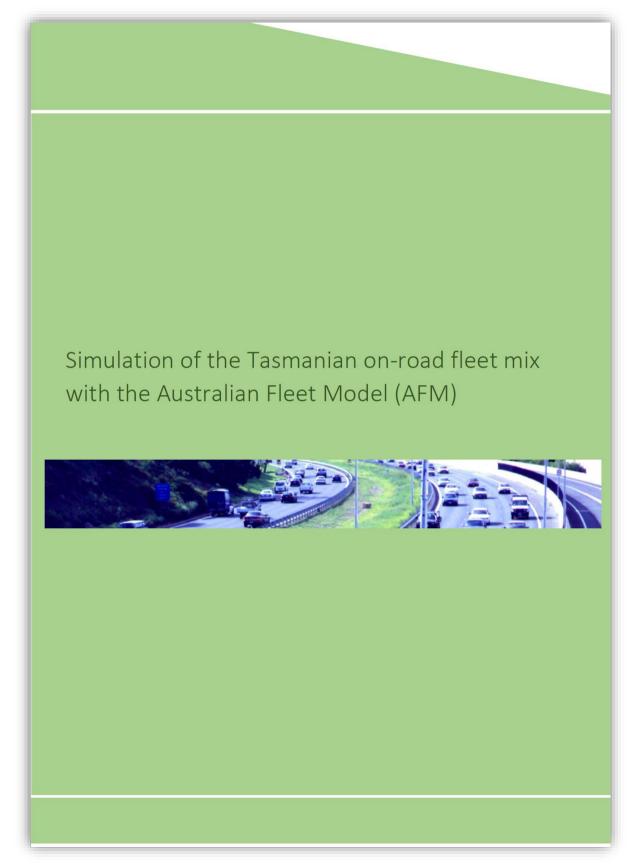
Dust emission model	Dust emission model input location coordinates (m)									
Emission source	coord	centre inates sources)	UTM coord (line-volum	inates	coord	corner inates rea sources)				
	Easting	Northing	Easting	Northing	Easting	Northing				
Exca_N_1	518832	5268430	-	-	-	-				
Exca_N_2	518862	5268451	-	-	-	-				
FEL_N_1	518682	5268269	-	-	-	-				
FEL_N_2	519353	5268756	-	-	-	-				
Exca_S_1	518732	5266550	-	-	-	-				
Exca_S_2	518737	5266688	-	-	-	-				
FEL_S_1	518525	5266852	-	-	-	-				
FEL_S_2	518894	5266047	-	-	-	-				
Trucks_N	-	-	519338 518697	5268747 5268284	-	-				
Dozer_N	-	-	518546 518566	5268135 5268064	-	-				
Grader_N	-	-	519331 518956	5268753 5268487	-	-				
Trucks_S	-	-	518555 518648 518722 518773 518808 518833 518886	5266846 5266763 5266671 5266578 5266469 5266269 5266061	-	-				
Dozer_S	-	-	518672 518734	5266826 5266820	-	-				
Grader_S	-	-	518896 518842 518820	5266063 5266245 5266439	-	-				

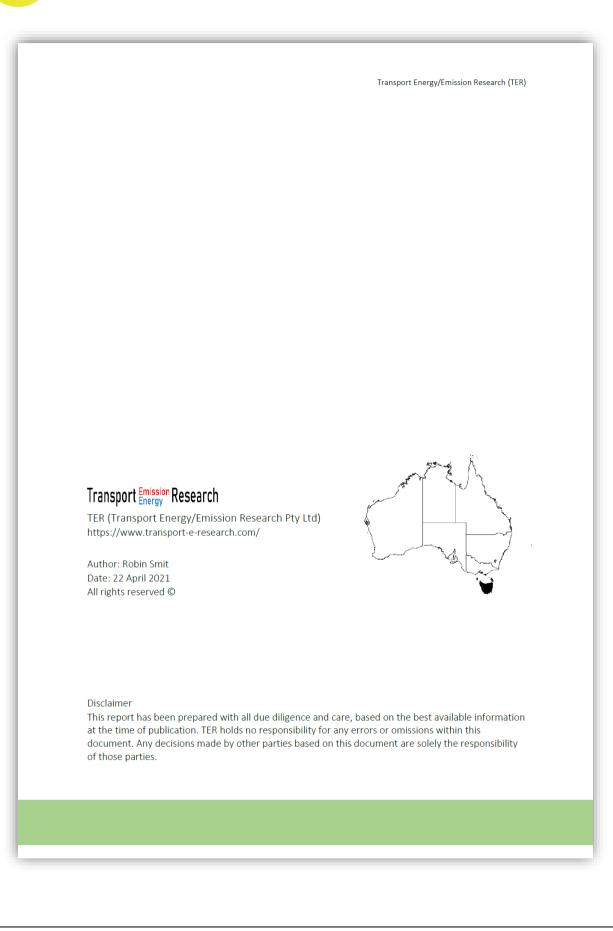
Wind_N - - - 519218 526679 519326 526874 526874 526874 51910 526874 51910 526874 51910 526864 51910 526864 519212 526864 518021 526864 518021 526851 518021 5268501 518611 526851 518611 526851 518611 526854 518811 526852		[[
Wind_N - - 519224 5268651 519365 526878 519170 5268641 519170 5268641 519021 5268641 518021 5268641 518021 5268641 518021 5268651 518021 526853 518021 526853 518611 526853 518611 526853 518611 526854 518811						519218	5268679
Wind_N 519369 526872 519349 526872 519021 5268541 519021 526854 519021 526854 51807 526853 51807 526853 518073 526853 518073 526853 518033 526853 518635 5268264 518636 5268264 518676 5268264 518676 5268645						519218	5268651
Wind_N <th< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>519224</td><td>5268651</td></th<>		-	-	-	-	519224	5268651
Wind_N - - - 519170 5268644 - - 519021 5268644 519021 5268644 - - 519212 5268640 519212 5268640 - - - 518971 5268452 518913 5268452 - - - 518031 5268052 518013 5268052 - - - 518511 5268052 518611 5268344 - - - 518611 5268344 5268304 - - - 518511 5268345 - - - 518611 5268345 - - - 518611 5268345 - - - 518611 5268452 - - - 518611 5268345 - - - 518611 5266435 - - - 51873 5266742 - <td< td=""><td rowspan="2"></td><td rowspan="2"></td><td></td><td></td><td></td><td>519365</td><td>5268748</td></td<>						519365	5268748
Wind_N - - 519021 5268541 Yind_N - - 519012 5268640 - - 518907 5268452 - - 518013 526850 - - 518033 5268452 - - 518033 526850 - - 518054 5268052 - - 518551 5268052 - - 518076 5268050 - - - 518551 5268052 - - - 518551 5268030 - - - 518650 5268250 - - - 518619 5268450 - - - 518656 526672 - - - 51875 5266649 - - - 51875 5266649 - - - 51875 5266630 51861 5266						519349	5268772
Wind_N - - 519021 526854 519021 5268452 5268452 518897 5268452 518012 5268452 518031 5268452 518013 5268452 518013 5268452 51801 5268052 518511 5268052 518611 5268159 518611 5268154 518611 5268154 518611 526852 518611 526854 518615 5266742 518615 5266742 518755 5266649 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>519170</td><td>5268644</td></tr<>						519170	5268644
Wind_NImage: state stat						519021	5268541
Wind_N - - - - 519012 51897 5268452 5268452 1 - - 518003 5268452 519013 5268050 518051 5268050 1 - - 518551 5268052 1 - - 518551 5268052 1 - - 518551 5268052 518611 5268159 518611 5268330 518738 5268330 518676 5268254 518611 5268250 518618 5268250 518811 526835 518676 5266845 518676 5266845 518676 5266845 518739 5266717 518739 5266732 518739 5266670 518613 5266803 518615 5266845 518669 5266845 518616 5266845 518611 5266845 518615 5266845 518611 5266843 518615 5266643 518615		-	-	-	-	519021	5268514
Wind_N . <td></td> <td></td> <td></td> <td></td> <td></td> <td>519212</td> <td>5268640</td>						519212	5268640
Wind_N - - 518943 (528501) 5268452 (519013) - - 518604 5268008 - - 518514 5268052 - - - 518514 5268052 - - - 518511 5268052 - - 518600 52683304 51861 5268334 518656 5268254 - - - 518680 5268254 - - - 518680 5268254 - - - 518681 5268455 51861 526845 518686 5266742 - - - 518775 526643 51865 5266772 518676 5266845 - - - 518775 5266650 518651 52666732 518651 52666732 - - - 51871 5266845 - - - 518615 5266650 <td></td> <td></td> <td></td> <td></td> <td></td> <td>519012</td> <td>5268535</td>						519012	5268535
wind_S - - - 51943 5268501 - - 518008 5268002 518524 5268002 - - - 51851 5268052 51851 5268052 - - - 51851 5268052 51851 5268052 - - - 518607 5268334 5268334 - - - 518605 5268254 518605 5268254 - - - - 518605 5268252 518619 5266845 - - - - 518656 5266845 5266732 - - - - 518659 5266649 518659 5266649 518659 5266649 518659 5266649 518659 5266643 518659 5266643 518659 5266643 518659 5266643 518651 5266643 518651 5266643 518651 5266643 518651 5266643 518651 52	Wind N					518897	5268452
Wind_S Normal Sector Sector <ths< td=""><td>wind_in</td><td>-</td><td>-</td><td>-</td><td>-</td><td>518943</td><td>5268452</td></ths<>	wind_in	-	-	-	-	518943	5268452
Nind_S I I I S18524 518511 5268052 5268052 518611 5268159 5268390 N - - 518807 5268390 518738 5268334 - - - - 518660 5268254 518680 5268254 - - - - 518611 5268324 - - - - 518610 5268254 51861 5268254 518656 5266345 51865 5266782 518656 5266782 - - - 518775 5266649 51865 5266782 518656 5266782 - - - - 518775 526649 51861 526645 518650 526643 518690 5266845 - - - - 518511 526645 - - - - 518515 526643 - - - - 518515 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>519013</td><td>5268501</td></td<>						519013	5268501
Nind_S I I I I S18551 5268052 Nind_S 518011 5268304 5268304 5268304 518378 5268304 I I I I S18578 5268230 518868 5268250 I I I I S1851 5268250 518619 5268454 I I I I S18619 5266845 518619 5266845 I I I I I S1873 526645 I I I I S18619 526645 I I I I S18619 526643 I I I I S18511 526643 I I I I I S18515 526643 I I I I I S18511 526643 I I I I I S18511 5266843 I						518608	5268208
Image: Norm of the stand of						518524	5268069
Wind_S - - - - 518807 5268330 Numd_S 518610 5268254 518650 5268254 S18811 5268352 518811 5268352 S18811 5268352 518619 5266845 S18811 5268455 518676 5266645 S18775 5266645 518755 5266649 S18863 526650 518679 5266649 S18619 5266643 518611 5266642 S18619 5266643 518669 5266643 S18619 5266643 518611 5266643 S18611 5266643 518611 5266643 S1879 5266617 518757 5266607 S1870 5266517 518679 5266517 S1870 5266513 518678 5266513 S18808 5266643 518808 5266643 S18808 5266643 518808 5266643 S18808 5266651 518813 5266551		-	-	-	-	518551	5268052
Wind_S 518738 5268334 Number 518650 5268254 S18811 5268320 518811 5268320 Number 518619 526845 S18811 526852 518676 526845 S18739 5266717 5266645 518676 5266645 S18739 5266717 5266643 518669 52666782 S18775 5266610 518756 5266649 518669 5266680 S18879 5266610 518669 5266643 518619 5266643 S18879 5266732 518511 5266845 518619 5266845 S18879 5266732 518511 5266845 51852 5266803 Number S18757 5266507 518757 5266507 S18757 526657 518757 526657 518757 526653 S18871 5266573 518757 5266533						518611	5268159
Normalization Normalization Normalization Second Secon						518807	5268390
Wind_S 518688 5268250 518811 5268352 5266845 Nind_S - - 518619 5266845 - - - 518676 5266845 518676 5266645 518676 5266782 518739 5266717 518775 5266649 518678 5266670 518683 5266670 518679 5266670 518683 52666732 - - - 518619 5266643 518619 5266643 518619 5266643 518619 5266643 518611 5266845 518614 5266643 518614 5266643 518590 5266643 518614 5266657 518511 5266643 518675 5266657 518757 5266643 518679 526659 518757 5266659 518675 5266651 518757 526659 518679 518676 5266643 518870 5266659 518675 5266659 <td></td> <td></td> <td></td> <td></td> <td></td> <td>518738</td> <td>5268334</td>						518738	5268334
Mind_S Image: state		-	-	-	-	518650	5268254
Wind_S - - - - - 518619 5266845 518676 5266845 518676 5266782 518739 5266712 518775 5266649 518745 5266649 518633 5266649 518614 5266732 518619 5266630 518619 5266842 - - - - 518775 5266680 518619 5266732 518619 5266732 - - - - 518619 5266630 518619 5266680 518619 5266680 518619 5266680 - - - - 518611 5266842 - - - - 518614 5266743 518552 5266803 518552 5266507 518552 5266507 518757 5266597 518757 5266599 518679 5266593 - - - - 518879 5266597 <						518688	5268250
Wind_S - - - - 518676 5266845 0 - - - 518739 5266717 0 - - - 518735 5266690 518745 5266600 518683 5266690 518683 5266732 518619 5266690 51869 5266680 518619 5266842 518619 5266842 518619 5266842 518619 5266842 518690 5266845 518611 5266845 518611 5266845 518611 5266845 518611 5266845 518611 5266845 518611 5266845 518757 5266507 518757 5266507 518755 5266511 518701 526657 518701 526657 518679 526657 518705 5266643 518808 5266043 518813 5266643 518813 5266551 518814 5266551 5						518811	5268352
Wind_S - - - - 518656 5266782 - - - - 518739 5266717 S266649 518745 5266649 518745 5266650 518669 5286680 518669 5286680 518619 5266732 518619 5266732 - - - - 518511 5266843 - - - - 518511 5266845 - - - - 518611 5266845 - - - - 518614 5266743 518552 5266803 518757 5266507 518552 5266803 518790 5266557 51875 5266551 518701 5266557 - - - 518679 5266643 51808 5266643 518808 5266643 518813 5266551 518813 5266551 518814 5266551 51						518619	5266845
Wind_S - - - 518739 5266717 - - - 518775 5266649 - - - 518775 5266649 518745 5266600 518683 5266600 518619 5266732 518619 5266732 - - - - 518519 5266845 - - - - 518611 5266845 - - - - 518614 5266743 51852 5266803 51852 5266803 518757 5266507 51852 5266507 518757 5266507 518757 5266507 51875 5266511 518757 526657 518679 5266599 - - - - 518679 5266599 - - - - 518679 5266643 518808 5266643 518808 5266643 518818 5266643 -						518676	5266845
Nind_S - - - 518775 5266649 Nind_S - - - 518745 526660 Nind_S - - - 518683 526660 Nind_S - - - 518619 5266732 Nind_S - - - 518511 5266842 Nind_S - - - 518511 5266845 Nind_S - - - 518511 5266845 Nind_S - - - - 518514 5266845 Nind_S - - - - 518514 5266453 S18757 5266507 518757 5266507 518757 526657 S18757 526657 - - - 518679 5266453 S18808 5266433 518807 5266551 518813 5266551 S18808 5266453 518813 5266551 518813 5266551 <td></td> <td></td> <td></td> <td></td> <td></td> <td>518656</td> <td>5266782</td>						518656	5266782
Wind_S - - - - 518745 5266650 51863 5266649 51863 5266649 - - - 518619 5266732 - - - 518511 5266845 - - - 518611 5266845 518614 5266743 518522 5266803 51852 5266803 518525 5266803 - - - 518757 5266507 51875 5266507 518757 5266507 51875 5266507 518679 5266593 - - - - - 518757 5266507 51875 5266511 51870 5266537 518687 5266643 - - - - - 518813 526651 518813 5266643 518813 526643 518813 526651 - - - - - 518812 526		-				518739	5266717
Wind_S - - - 518633 526649 - - 518619 5266732 - - 518511 5266842 518590 5266845 518611 5266845 518611 5266845 518611 5266845 51851 5266845 518614 5266743 51852 5266803 518525 5266803 6187 5266507 518757 5266517 51875 5266511 518671 5266537 51875 5266511 518679 5266537 51867 5266643 518808 5266643 518813 5266537 518813 5266537 518813 5266643 518808 5266643 518813 5266531 518813 5266531 518813 5266543 518813 5266531 518813 5266453 518813 526643 518813 5266543 518813 526643 518813 5266531 <td></td> <td rowspan="5">-</td> <td>-</td> <td rowspan="5">-</td> <td>518775</td> <td>5266649</td>			-	-	-	518775	5266649
Wind_S - - - - 51869 5266732 - - - 518519 5266732 Wind_S - - 518511 5266845 - - - 518611 5266845 - - - 518611 5266845 518614 5266743 518522 5266803 51852 5266803 518552 5266453 518757 526657 518757 526657 518679 526657 518679 526653 - - - - 518679 526653 518808 5266643 518808 5266643 518808 5266643 518813 5266551 518813 5266551 518812 5266453 - - - - - 518824 5266241 - - - - - 518851 5266243 518909 5266059 518851 5266243						518745	5266650
Wind_S Image: state						518683	5266649
Wind_S - - - - - 518511 5266842 518590 5266845 518611 5266845 518611 5266845 518614 5266743 518552 5266803 518552 5266803 518552 5266453 518552 5266803 518757 5266507 518757 5266507 518757 5266511 518751 5266557 518679 5266557 518679 5266533 518790 5266543 518679 5266531 518679 5266537 518687 5266643 518808 5266643 518808 5266643 518813 5266551 518813 5266551 518813 5266551 518812 5266243 518813 5266243 518851 5266243 518851 5266243 518909 5266243 518909 5266243 518909 5266243 518909 5266243 518909 5266059						518669	5266680
Wind_S - - - - 518590 5266845 518611 5266845 518614 5266743 518552 5266803 Wind_S - - - 518790 5266453 518552 5266507 518757 5266507 51870 5266557 518679 5266557 6. - - - 518679 5266599 6. - - - 518687 5266643 518808 5266643 518808 5266643 518813 5266551 6. - - - - 518813 5266551 518813 5266551 518813 5266551 518813 5266551 6. - - - - 518812 5266243 6. - - - - - 518851 5266243 6. - - - - - 518851 5266243						518619	5266732
Wind_S - - 518611 5266845 Wind_S - - - 518614 5266743 - - - 518552 5266803 - - - 518790 5266453 518757 5266507 518757 5266507 518701 5266557 5266557 518679 5266599 518679 5266643 - - - - 518808 5266643 518808 5266651 518813 5266551 518813 5266551 - - - - - 518813 5266551 518813 5266551 518813 5266551 518812 5266453 - - - - 518812 5266241 - - - - 518851 5266243 - - - - 51899 5266243 51899 - -		-	-	-	-	518511	5266842
Wind_S 518614 5266743 Image: Solution of the stress of the stre						518590	5266845
Wind_S Image: state						518611	5266845
Wind_S Starps Starps						518614	5266743
- - - - - 518790 5266453 518757 5266507 518725 5266511 518701 5266557 518679 5266643 518687 5266643 518808 5266643 518808 5266643 518808 5266643 518808 5266643 518813 5266551 518813 5266551 518812 5266453 - - - - 518824 5266241 518851 5266243 518851 5266243 - - - - 518851 5266243						518552	5266803
- - - - 518725 5266511 518701 5266557 518679 5266599 518687 5266643 518808 5266643 518808 5266600 518813 5266551 518813 5266551 518813 5266551 - - - - 518812 5266433 518812 5266453 518812 5266453 - - - - 518824 5266241 518851 5266243 518851 5266243 518909 5266059 518909 5266059	vvinu_S		-			518790	5266453
- - - - 518701 5266599 518679 5266599 518687 526643 51808 5266643 518808 5266643 518808 5266643 518808 5266600 518813 5266551 518812 5266453 518812 5266453 518812 5266453 - - - 518824 5266241 518851 5266243 518851 5266243 - - - - 518851 5266243						518757	5266507
- - - - 518679 5266599 518687 526643 518687 5266643 51808 5266643 518808 5266600 518813 5266551 518813 5266453 - - - 518812 5266453 - - - 518824 5266241 - - - - 518851 5266243 - - - - 518851 5266243 518909 5266059 518909 5266059						518725	5266511
Image: state stat		-				518701	5266557
- - - - - - 518808 5266643 518808 5266600 518813 5266551 518813 5266453 518812 5266453 518812 5266453 - - - - 518824 5266241 518851 5266243 518851 5266243 518909 5266059 518909 5266059				-	-	518679	5266599
- - - - 518808 5266500 518813 5266551 518812 5266453 518824 5266241 518851 5266243 518851 5266243 518851 5266243 518899 5266059 518909 5266059						518687	5266643
- - - 518813 5266551 - - - 518812 5266453 - - - - 518824 5266241 518851 5266243 518851 5266243 518909 5266059						518808	5266643
Image: matrix of the system 518812 5266453 Image: matrix of the system 518824 5266241 Image: matrix of the system 518851 5266243 Image: matrix of the system 518851 5266243 Image: matrix of the system 518909 5266059						518808	5266600
518824 5266241 518851 5266243 518909 5266059						518813	5266551
518851 5266243 518909 5266059						518812	5266453
518909 5266059				-	-	518824	5266241
						518851	5266243
			-			518909	5266059
510074 5200051					518874	5266051	

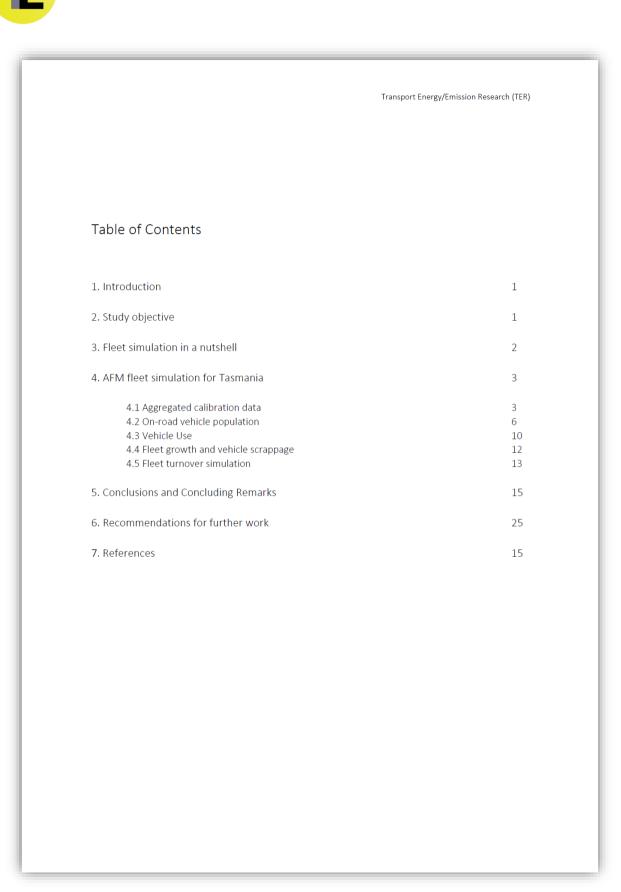
Traffic data

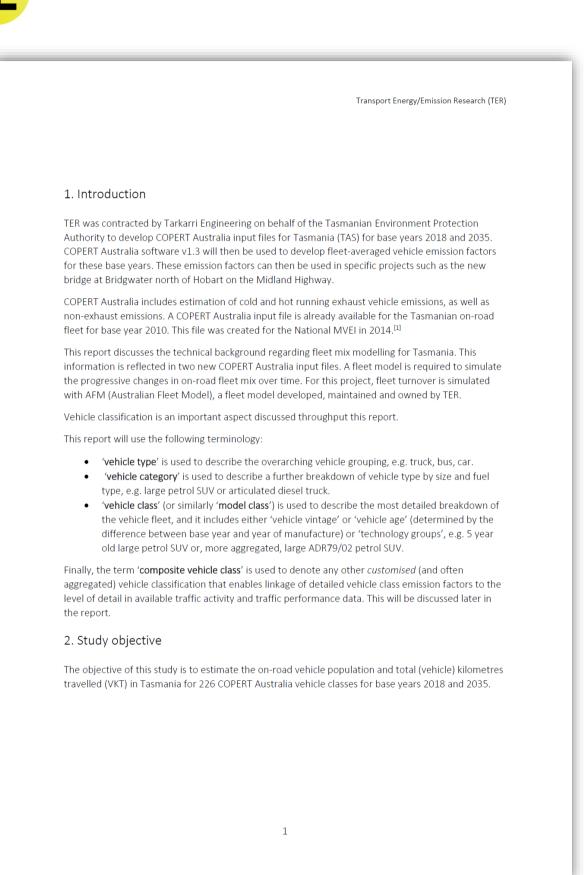
			Current	+10 years
Count location		Unit	2021	2031
		AADT	27,900 vpd	35,000 vpd
А	Des alsos billistereses	Am Peak	2,900 vph	3,650 vph
A	Brooker Highway	PM Peak	2,700 vph	3,400 vph
		HV%	13.8%	13.80%
		AADT	4,800 vpd	6,000 vpd
В	Link road between Main Rd and Black	Am Peak	250 vph	300 vph
Б	Snake Rd (prior to Brooker southbound on-ramp)	PM Peak	400 vph	480 vph
		HV%	7.2%	7.20%
		AADT	2,000 vpd	2,200 vpd
С	Brooker Ave southbound off-ramp	Am Peak	150 vph	190 vph
C		PM Peak	200 vph	250 vph
		HV%	7.2%	7.20%
	Lyell Hwy/ Main Rd corridor	AADT	5,900	7,500 vpd
D		Am Peak	500 vph	620 vph
D		PM Peak	400 vph	500 vph
		HV%	6.8%	6.80%
	Bridge	AADT	26,600 vpd	33,500 vpd
Е		Am Peak	1,920 vph	2,450 vph
		PM Peak	2,050 vph	2,600 vph
		HV%	11.4%	11.40%
	Midland Hwy southbound off-ramp	AADT	1,000 vpd	1,200 vpd
F		Am Peak	100 vph	125 vph
		PM Peak	200 vph	250 vph
		HV%	5.0%	5.00%
	Old Main Rd connection	AADT	4,500 vpd	5,500 vpd
G		Am Peak	300 vph	370 vph
6		PM Peak	500 vph	620 vph
		HV%	4.5%	4.50%

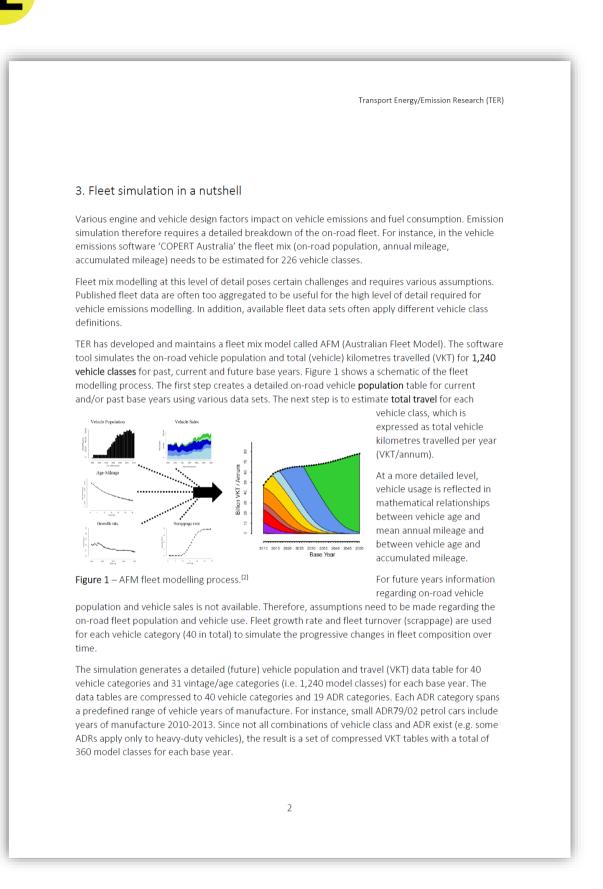
VOC speciation

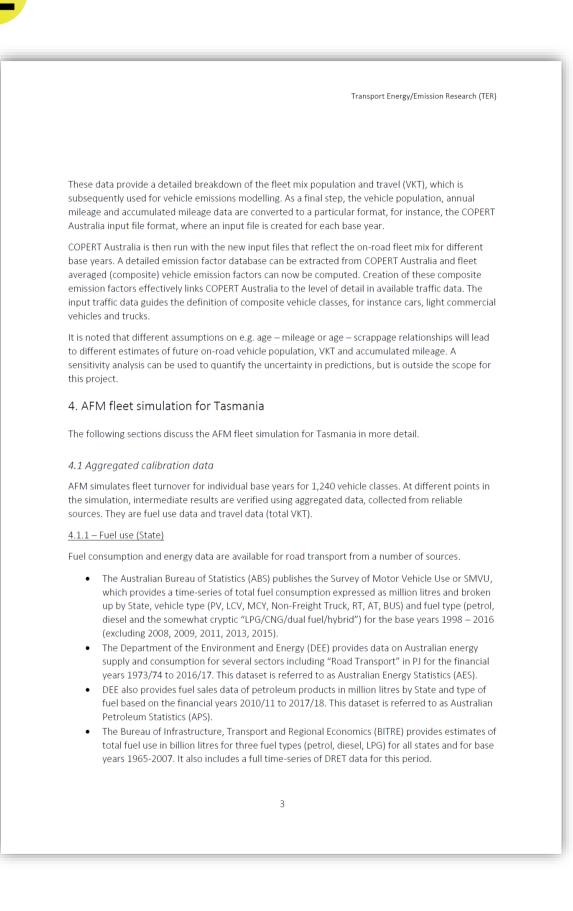

VOC speciation	on (mg/m³)						
		Eviating	20	2021		2031	
Category	Species	Existing	Option 1	Option 2	Option 1	Option 2	
		R5	R8	R8	R8	R8	
	ethane	5.8 x 10 ⁻⁴	1.5 x 10 ⁻⁴	1.5 x 10 ⁻⁴	6.7 x 10 ⁻⁵	6.4 x 10 ⁻⁵	
	propane	6.5 x 10 ⁻⁴	1.7 x 10 ⁻⁴	1.7 x 10 ⁻⁴	1.5 x 10 ⁻⁴	1.4 x 10 ⁻⁴	
	butane	1.4 x 10 ⁻³	3.7 x 10 ⁻⁴	3.5 x 10 ⁻⁴	2.5 x 10 ⁻⁴	2.4 x 10 ⁻⁴	
	isobutane	6.7 x 10 ⁻⁴	1.8 x 10 ⁻⁴	1.7 x 10 ⁻⁴	1.5 x 10 ⁻⁴	1.4 x 10 ⁻⁴	
	pentane	1.0 x 10 ⁻³	2.7 x 10 ⁻⁴	2.6 x 10 ⁻⁴	2.5 x 10 ⁻⁴	2.4 x 10 ⁻⁴	
	isopentane	2.1 x 10 ⁻³	5.5 x 10 ⁻⁴	5.3 x 10 ⁻⁴	4.2 x 10 ⁻⁴	4.0 x 10 ⁻⁴	
	hexane	4.7 x 10 ⁻⁴	1.2 x 10 ⁻⁴	1.2 x 10 ⁻⁴	8.7 x 10 ⁻⁵	8.3 x 10 ⁻⁵	
	heptane	2.6 x 10 ⁻⁴	6.7 x 10 ⁻⁵	6.5 x 10 ⁻⁵	5.8 x 10 ⁻⁵	5.5 x 10 ⁻⁵	
	octane	1.2 x 10 ⁻⁴	3.2 x 10 ⁻⁵	3.0 x 10 ⁻⁵	1.3 x 10 ⁻⁵	1.3 x 10 ⁻⁵	
Alkanes	2-methylhexane	2.7 x 10 ⁻⁴	7.2 x 10 ⁻⁵	6.9 x 10 ⁻⁵	3.1 x 10⁻⁵	3.0 x 10 ⁻⁵	
	nonane	3.3 x 10⁻⁵	8.6 x 10 ⁻⁶	8.3 x 10 ⁻⁶	3.4 x 10 ⁻⁶	3.3 x 10 ⁻⁶	
	2-methylheptane	7.4 x 10 ⁻⁵	2.0 x 10 ⁻⁵	1.9 x 10 ⁻⁵	8.1 x 10 ⁻⁶	7.7 x 10 ⁻⁶	
	3-methylhexane	2.0 x 10 ⁻⁴	5.3 x 10 ⁻⁵	5.1 x 10 ⁻⁵	2.2 x 10 ⁻⁵	2.1 x 10⁻⁵	
	decane	8.6 x 10 ⁻⁵	2.3 x 10 ⁻⁵	2.2 x 10 ⁻⁵	1.4 x 10 ⁻⁵	1.4 x 10 ⁻⁵	
	3-methylheptane	1.1 x 10 ⁻⁴	2.9 x 10 ⁻⁵	2.8 x 10 ⁻⁵	1.3 x 10 ⁻⁵	1.2 x 10 ⁻⁵	
	Alkanes C10-C12	2.4 x 10 ⁻⁴	6.3 x 10 ⁻⁵	6.1 x 10 ⁻⁵	2.4 x 10 ⁻⁵	2.3 x 10 ⁻⁵	
	Alkanes C>13	8.2 x 10 ⁻⁴	2.2 x 10 ⁻⁴	2.1 x 10 ⁻⁴	1.7 x 10 ⁻⁴	1.6 x 10 ⁻⁴	
	2-methylpentane	1.1 x 10 ⁻³	2.8 x 10 ⁻⁴	2.7 x 10 ⁻⁴	3.6 x 10 ⁻⁴	3.5 x 10 ⁻⁴	
	3-methylpentane	1.9 x 10 ⁻³	5.0 x 10 ⁻⁴	4.8 x 10 ⁻⁴	6.5 x 10 ⁻⁴	6.2 x 10 ⁻⁴	
Cycloalkanes	Cycloalkanes	2.5 x 10 ⁻⁴	6.5 x 10 ⁻⁵	6.3 x 10 ⁻⁵	3.0 x 10 ⁻⁵	2.9 x 10 ⁻⁵	
	ethylene	2.0 x 10 ⁻³	5.2 x 10 ⁻⁴	5.0 x 10 ⁻⁴	2.4 x 10 ⁻⁴	2.3 x 10 ⁻⁴	
	propylene	1.0 x 10 ⁻³	2.7 x 10 ⁻⁴	2.6 x 10 ⁻⁴	1.2 x 10 ⁻⁴	1.2 x 10 ⁻⁴	
	propadiene	6.1 x 10 ⁻⁶	1.6 x 10 ⁻⁶	1.5 x 10 ⁻⁶	6.1 x 10 ⁻⁷	5.9 x 10 ⁻⁷	
	1-butene	1.9 x 10 ⁻⁴	5.0 x 10 ⁻⁵	4.8 x 10 ⁻⁵	3.3 x 10 ⁻⁵	3.2 x 10 ⁻⁵	
	isobutene	7.2 x 10 ⁻⁴	1.9 x 10 ⁻⁴	1.8 x 10 ⁻⁴	8.8 x 10 ⁻⁵	8.5 x 10 ⁻⁵	
	2-butene	4.7 x 10 ⁻⁴	1.2 x 10 ⁻⁴	1.2 x 10 ⁻⁴	9.1 x 10⁻⁵	8.7 x 10⁻⁵	
Alkenes	1,3-butadiene	3.1 x 10 ⁻⁴	8.2 x 10 ⁻⁵	7.8 x 10 ⁻⁵	4.4 x 10 ⁻⁵	4.2 x 10 ⁻⁵	
Aikenes	1-pentene	2.2 x 10 ⁻⁵	5.8 x 10 ⁻⁶	5.5 x 10⁻ ⁶	2.4 x 10 ⁻⁶	2.3 x 10 ⁻⁶	
	2-pentene	2.4 x 10 ⁻⁴	6.3 x 10 ⁻⁵	6.1 x 10 ⁻⁵	6.8 x 10 ⁻⁵	6.5 x 10⁻⁵	
	1-hexene	2.1 x 10 ⁻⁵	5.4 x 10 ⁻⁶	5.2 x 10 ⁻⁶	2.1 x 10 ⁻⁶	2.0 x 10 ⁻⁶	
	dimethylhexene	1.8 x 10 ⁻⁵	4.8 x 10 ⁻⁶	4.6 x 10 ⁻⁶	1.8 x 10 ⁻⁶	1.8 x 10 ⁻⁶	
	1-butine	3.0 x 10 ⁻⁵	8.0 x 10 ⁻⁶	7.6 x 10⁻ ⁶	3.1 x 10 ⁻⁶	3.0 x 10 ⁻⁶	
	propine	8.7 x 10 ⁻⁵	2.3 x 10 ⁻⁵	2.2 x 10 ⁻⁵	1.2 x 10 ⁻⁵	1.1 x 10⁻⁵	
	acetylene	9.1 x 10 ⁻⁴	2.4 x 10 ⁻⁴	2.3 x 10 ⁻⁴	1.1 x 10 ⁻⁴	1.0 x 10 ⁻⁴	
Aldehydes	formaldehyde	6.8 x 10 ⁻⁴	1.8 x 10 ⁻⁴	1.7 x 10 ⁻⁴	9.8 x 10 ⁻⁵	9.4 x 10 ⁻⁵	
	acetaldahyde	3.0 x 10 ⁻⁴	7.8 x 10 ⁻⁵	7.5 x 10 ⁻⁵	4.5 x 10 ⁻⁵	4.3 x 10 ⁻⁵	
	acrolein	1.1 x 10 ⁻⁴	2.9 x 10 ⁻⁵	2.7 x 10 ⁻⁵	1.7 x 10 ⁻⁵	1.6 x 10 ⁻⁵	
	benzaldehyde	1.2 x 10 ⁻⁴	3.0 x 10 ⁻⁵	2.9 x 10 ⁻⁵	1.7 x 10 ⁻⁵	1.6 x 10 ⁻⁵	
	crotonaldehyde	4.4 x 10 ⁻⁵	1.2 x 10 ⁻⁵	1.1 x 10 ⁻⁵	8.8 x 10 ⁻⁶	8.5 x 10 ⁻⁶	
	methacrolein	2.9 x 10 ⁻⁵	7.6 x 10 ⁻⁶	7.2 x 10 ⁻⁶	5.5 x 10 ⁻⁶	5.2 x 10 ⁻⁶	
	butyraldehyde	3.0 x 10 ⁻⁵	7.9 x 10 ⁻⁶	7.6 x 10 ⁻⁶	5.6 x 10 ⁻⁶	5.4 x 10 ⁻⁶	
	isobutanaldehyde	3.3 x 10 ⁻⁵	8.7 x 10 ⁻⁶	8.3 x 10 ⁻⁶	5.2 x 10 ⁻⁶	5.0 x 10 ⁻⁶	
	propionaldehyde	5.8 x 10 ⁻⁵	1.5 x 10 ⁻⁵	1.5 x 10 ⁻⁵	9.7 x 10 ⁻⁶	9.4 x 10 ⁻⁶	

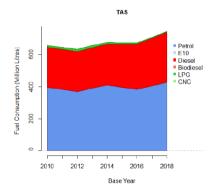



	hexanal	2.4 x 10 ⁻⁵	6.4 x 10 ⁻⁶	6.2 x 10 ⁻⁶	6.7 x 10 ⁻⁶	6.4 x 10 ⁻⁶
	i-valeraldehyde	2.4 x 10 ⁻⁶	7.1 x 10 ⁻⁷	6.8 x 10 ⁻⁷	5.4 x 10 ⁻⁷	5.2 x 10 ⁻⁷
	· · · · · · · · · · · · · · · · · · ·					
	valeraldehyde	1.2 x 10 ⁻⁵	3.2 x 10 ⁻⁶	3.1 x 10 ⁻⁶ 1.1 x 10 ⁻⁵	2.4 x 10 ⁻⁶	2.3 x 10 ⁻⁶
	o-tolualdehyde	4.2 x 10 ⁻⁵	1.1 x 10 ⁻⁵		7.0 x 10 ⁻⁶	6.7 x 10 ⁻⁶
	m-tolualdehyde	6.5 x 10 ⁻⁵	1.7 x 10 ⁻⁵	1.6 x 10 ⁻⁵	9.1 x 10 ⁻⁶	8.8 x 10 ⁻⁶
	p-tolualdehyde	2.9 x 10 ⁻⁵	7.7 x 10 ⁻⁶	7.4 x 10 ⁻⁶	3.4 x 10 ⁻⁶	3.2 x 10 ⁻⁶
Ketones	acetone	1.3 x 10 ⁻⁴	3.4 x 10 ⁻⁵	3.3 x 10 ⁻⁵	1.3 x 10 ⁻⁵	1.3 x 10 ⁻⁵
	methylethlketone	3.0 x 10 ⁻⁵	7.9 x 10 ⁻⁶	7.6 x 10 ⁻⁶	3.3 x 10 ⁻⁶	3.2 x 10 ⁻⁶
	toluene	2.9 x 10 ⁻³	7.5 x 10 ⁻⁴	7.2 x 10 ⁻⁴	3.9 x 10 ⁻⁴	3.7 x 10 ⁻⁴
	ethylbenzene	9.5 x 10 ⁻⁴	2.5 x 10 ⁻⁴	2.4 x 10 ⁻⁴	1.7 x 10 ⁻⁴	1.6 x 10 ⁻⁴
	m,p-xylene	1.8 x 10 ⁻³	4.6 x 10 ⁻⁴	4.4 x 10 ⁻⁴	3.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴
	o-xylene	9.0 x 10 ⁻⁴	2.4 x 10 ⁻⁴	2.3 x 10 ⁻⁴	1.5 x 10 ⁻⁴	1.4 x 10 ⁻⁴
Aromatics	1,2,3 trimethylbenzene	1.7 x 10 ⁻⁴	4.4 x 10 ⁻⁵	4.2 x 10 ⁻⁵	1.9 x 10 ⁻⁵	1.8 x 10 ⁻⁵
	1,2,4 trimethylbenzene	8.1 x 10 ⁻⁴	2.1 x 10 ⁻⁴	2.0 x 10 ⁻⁴	9.8 x 10 ⁻⁵	9.5 x 10 ⁻⁵
	1,3,5 trimethylbenzene	2.9 x 10 ⁻⁴	7.6 x 10 ⁻⁵	7.3 x 10 ⁻⁵	3.3 x 10 ⁻⁵	3.1 x 10 ⁻⁵
	styrene	1.9 x 10 ⁻⁴	5.0 x 10 ⁻⁵	4.8 x 10 ⁻⁵	2.2 x 10 ⁻⁵	2.1 x 10 ⁻⁵
	benzene	1.4 x 10 ⁻³	3.8 x 10 ⁻⁴	3.6 x 10 ⁻⁴	1.8 x 10 ⁻⁴	1.7 x 10 ⁻⁴
Aromatics C9	Aromatics C9	8.4 x 10 ⁻⁴	2.2 x 10 ⁻⁴	2.1 x 10 ⁻⁴	9.4 x 10 ⁻⁵	9.0 x 10⁻⁵
Aromatics C10	Aromatics C10	3.7 x 10 ⁻⁴	9.8 x 10 ⁻⁵	9.4 x 10 ⁻⁵	3.7 x 10 ⁻⁵	3.6 x 10 ⁻⁵
Aromatics C>13	Aromatics C>13	1.5 x 10 ⁻³	3.9 x 10 ⁻⁴	3.7 x 10 ⁻⁴	2.2 x 10 ⁻⁴	2.1 x 10 ⁻⁴
	indeno(1,2,3-cd)pyrene	1.3 x 10 ⁻⁷	3.4 x 10 ⁻⁸	3.2 x 10 ⁻⁸	6.3 x 10 ⁻⁸	6.1 x 10 ⁻⁸
	benzo(k)fluoranthene	1.9 x 10 ⁻⁷	5.0 x 10 ⁻⁸	4.8 x 10 ⁻⁸	9.0 x 10 ⁻⁸	8.7 x 10 ⁻⁸
	benzo(b)fluoranthene	2.1 x 10 ⁻⁷	5.5 x 10 ⁻⁸	5.2 x 10 ⁻⁸	1.0 x 10 ⁻⁷	9.6 x 10 ⁻⁸
	benzo(ghi)perylene	2.2 x 10 ⁻⁷	5.7 x 10 ⁻⁸	5.5 x 10 ⁻⁸	1.1 x 10 ⁻⁷	1.0 x 10 ⁻⁷
	fluoranthene	1.8 x 10 ⁻⁶	4.8 x 10 ⁻⁷	4.6 x 10 ⁻⁷	9.1 x 10 ⁻⁷	8.8 x 10 ⁻⁷
	benzo(a)pyrene	1.1 x 10 ⁻⁷	2.9 x 10 ⁻⁸	2.8 x 10 ⁻⁸	5.8 x 10 ⁻⁸	5.6 x 10 ⁻⁸
	pyrene	1.7 x 10 ⁻⁶	4.5 x 10 ⁻⁷	4.3 x 10 ⁻⁷	8.7 x 10 ⁻⁷	8.4 x 10 ⁻⁷
	perylene	3.0 x 10 ⁻⁸	8.0 x 10 ⁻⁹	7.7 x 10 ⁻⁹	1.6 x 10 ⁻⁸	1.5 x 10 ⁻⁸
	anthanthrene	5.9 x 10 ⁻⁹	1.5 x 10 ⁻⁹	1.5 x 10 ⁻⁹	3.1 x 10 ⁻⁹	3.0 x 10 ⁻⁹
	benzo(b)fluorene	7.9 x 10 ⁻⁷	2.1 x 10 ⁻⁷	2.0 x 10 ⁻⁷	4.2 x 10 ⁻⁷	4.0 x 10 ⁻⁷
	benzo(e)pyrene	3.0 x 10 ⁻⁷	7.9 x 10 ⁻⁸	7.6 x 10 ⁻⁸	1.7 x 10 ⁻⁷	1.6 x 10 ⁻⁷
	triphenylene	4.2 x 10 ⁻⁷	1.1 x 10 ⁻⁷	1.1 x 10 ⁻⁷	2.2 x 10 ⁻⁷	2.1 x 10 ⁻⁷
	benzo(j)fluoranthene	2.7 x 10 ⁻⁷	7.2 x 10 ⁻⁸	6.9 x 10 ⁻⁸	1.1 x 10 ⁻⁷	1.1 x 10 ⁻⁷
PAHs & POPs	dibenzo(a,j)anthacene	1.1 x 10 ⁻⁸	3.0 x 10 ⁻⁹	2.9 x 10 ⁻⁹	5.0 x 10 ⁻⁹	4.8 x 10 ⁻⁹
	dibenzo(a,l)pyrene	5.3 x 10 ⁻⁹	1.4 x 10 ⁻⁹	1.3 x 10 ⁻⁹	2.1 x 10 ⁻⁹	2.1 x 10 ⁻⁹
	3,6-dimethyl-phenanthrene	1.6 x 10 ⁻⁷	4.2 x 10 ⁻⁸	4.0 x 10 ⁻⁸	7.7 x 10 ⁻⁸	7.4 x 10 ⁻⁸
	benzo(a)anthracene	2.0 x 10 ⁻⁷	5.2 x 10 ⁻⁸	5.0 x 10 ⁻⁸	1.0 x 10 ⁻⁷	9.7 x 10 ⁻⁸
	acenaphthylene	9.2 x 10 ⁻⁷	2.4 x 10 ⁻⁷	2.3 x 10 ⁻⁷	5.5 x 10 ⁻⁷	5.3 x 10 ⁻⁷
	acenapthene	1.2 x 10 ⁻⁶	3.3 x 10 ⁻⁷	3.1 x 10 ⁻⁷	7.4 x 10 ⁻⁷	7.1 x 10 ⁻⁷
	fluorene	7.0 x 10 ⁻⁷	1.9 x 10 ⁻⁷	1.8 x 10 ⁻⁷	3.1 x 10 ⁻⁷	2.9 x 10 ⁻⁷
	chrysene	5.2 x 10 ⁻⁷	1.4 x 10 ⁻⁷	1.3 x 10 ⁻⁷	2.5 x 10 ⁻⁷	2.4 x 10 ⁻⁷
	phenanthrene	3.5 x 10⁻ ⁶	9.1 x 10 ⁻⁷	8.7 x 10 ⁻⁷	1.7 x 10 ⁻⁶	1.6 x 10 ⁻⁶
	napthalene	1.1 x 10 ⁻⁴	2.8 x 10 ⁻⁵	2.7 x 10 ⁻⁵	5.4 x 10 ⁻⁵	5.2 x 10 ⁻⁵
	anthracene	3.9 x 10 ⁻⁷	1.0 x 10 ⁻⁷	9.8 x 10 ⁻⁸	1.6 x 10 ⁻⁷	1.6 x 10 ⁻⁷
	coronene	1.8 x 10 ⁻⁸	4.8 x 10 ⁻⁹	4.6 x 10 ⁻⁹	6.1 x 10 ⁻⁹	5.9 x 10 ⁻⁹
	dibenzo(ah)anthracene	2.3 x 10 ⁻⁸	6.1 x 10 ⁻⁹	5.8 x 10 ⁻⁹	1.2 x 10 ⁻⁸	1.2 x 10 ⁻⁸
Dioxins	Dioxins	1.1 x 10 ⁻¹²	2.9 x 10 ⁻¹³	2.8 x 10 ⁻¹³	4.7 x 10 ⁻¹³	4.5 x 10 ⁻¹³
	Furans	2.3 x 10 ⁻¹²	6.1 x 10 ⁻¹³	5.8 x 10 ⁻¹³	9.8 x 10 ⁻¹³	9.4 x 10 ⁻¹³




TER report





Transport Energy/Emission Research (TER)

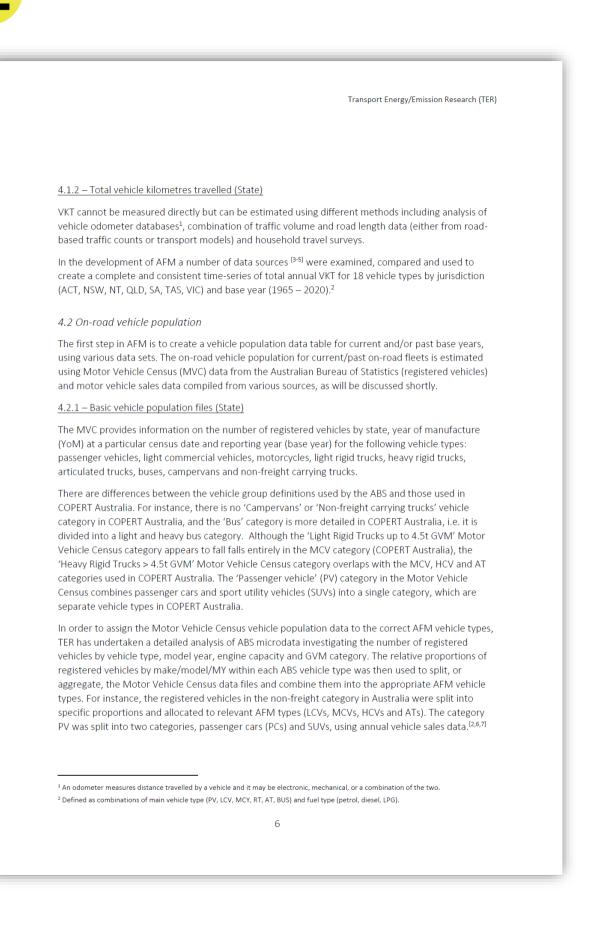
These data have different levels of detail. For instance, the ABS SMVU combines petrol and E10 together in a category called "petrol" and does not distinguish between ULP and PULP. DEE does distinguish between ULP, PULP and E10, but lumps ACT and NSW together.

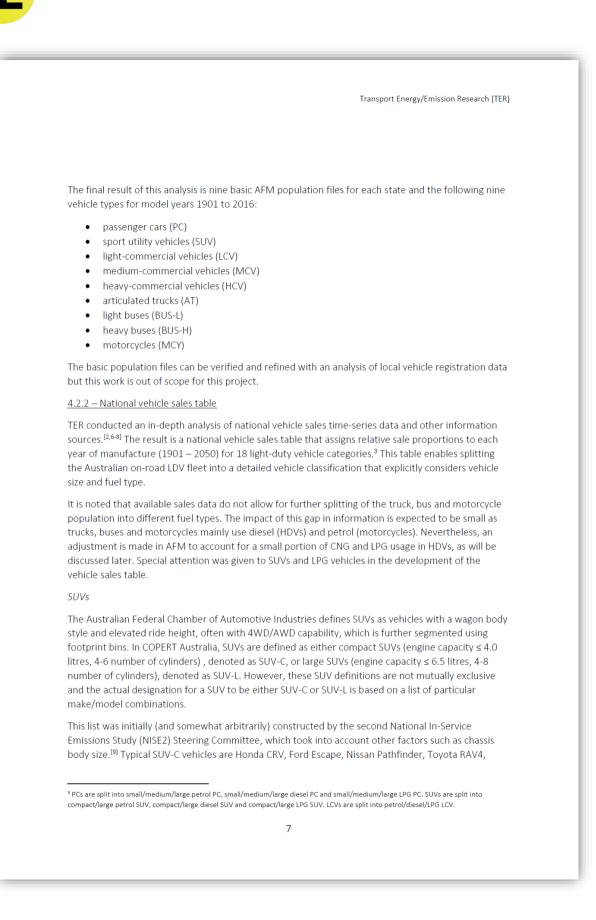
To create a consistent dataset, the fuel data sets were first converted to a common base, i.e. volume (million litres) and subsequently mass units (metric tonne) using fuel parameters for each type of fuel (fuel density and lower/higher heating values). Then financial year data were converted to calendar year data by taking the average of the overlapping financial years (e.g. 2010 is the average of 2009-2010 and 2010-2011 financial years). The results for Tasmania are shown in Figure 3 for selected sources of information.

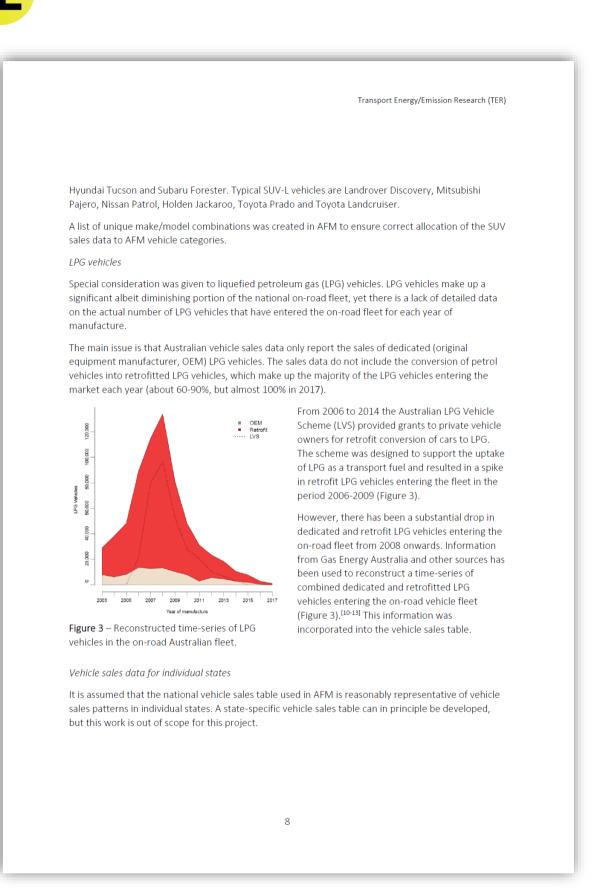
Petrol/E10

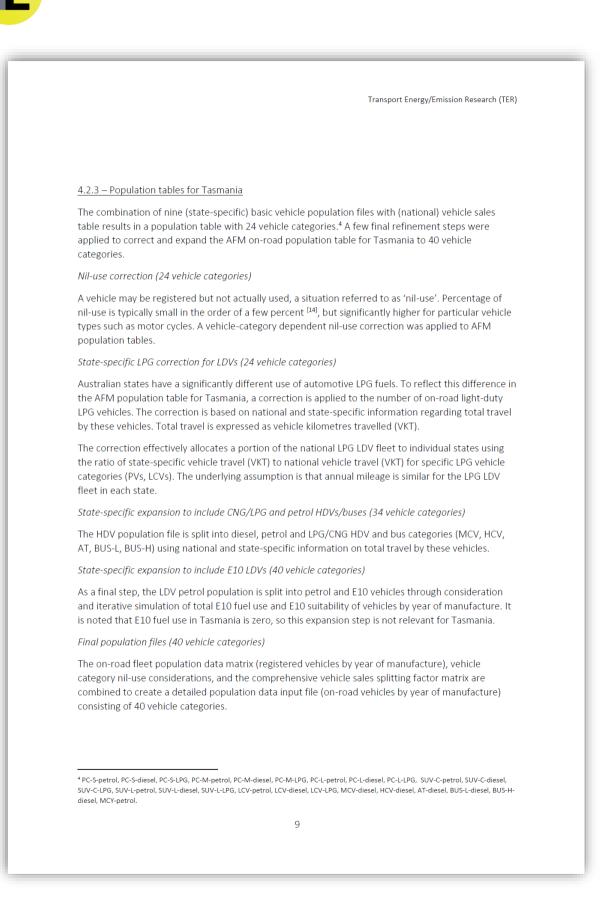
Differences in estimated petrol use (national level) by road transport from the data sources vary with 1-6%, where SMVU consistently reports the lowest consumption of petrol. However, the APS and AES petrol sales and consumption data contain a small fraction that is not used by road transport. BITRE estimated that this fraction has been relatively constant over time (about 5%), which is line with the observed differences between the datasets.^[3] It appears that the SMVU data generally provides the most accurate total petrol use data for road transport. It does not provide separate fuel use data for E10, which is not an issue in Tasmania as this type of fuel is not used. However for Tasmania, the APS and AES data both provide a substantially *lower* estimate of petrol

Figure 3 – Fuel use data for Tasmania using SMVU (petrol, diesel) and AES (other fuels).


fuel use (15-20%). After consideration of this discrepancy, the APS petrol fuel use data were selected for fuel calibration, rather than SMVU. The APS petrol fuel estimate for Tasmania produced the lowest errors in initial (pre-calibration) COPERT Australia simulations.


Diesel


ABS and AES provide similar estimates of diesel use by road transport, where AES is about 0-3% higher for Australia, depending on the financial year. However, differences can be substantially larger at State level. In fact, AES estimates a substantially lower diesel fuel use by road transport in e.g. NSW of about 20% and about 10% lower diesel use in Victoria. In Tasmania the difference between AES and ABS varies year-by-year, with the largest difference in 2018 (AES is 23% lower). The APS reports diesel use up to a factor of 2 higher than the the SMVU for Australia, but contains a substantial fraction that is not used by road transport. It is estimated that this fraction has increased over time, with a value of about 0.45 in 2007.^[3] APS also estimates larger diesel fuel use in Tasmania, and the difference with ABS has been growing from about 45% in 2010 to about 65% in 2018. The fuel data analysis suggests that about 60% of diesel fuel in Tasmania is used by road transport. It appears that the SMVU data provides the most accurate total diesel use data for road transport. However it is noted that the uncertainty in this value appears high.


4

Transport Energy/Emission Research (TER)

It is noted that combination of census data with sales data inherently assumes that the proportions for a particular year of manufacture (model year) in vehicle sales data remain constant as the vehicle population ages and vehicles are scrapped. This seems a reasonable assumption.

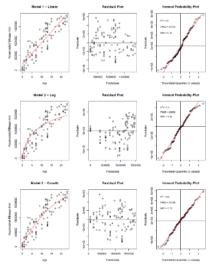
4.3 Vehicle use

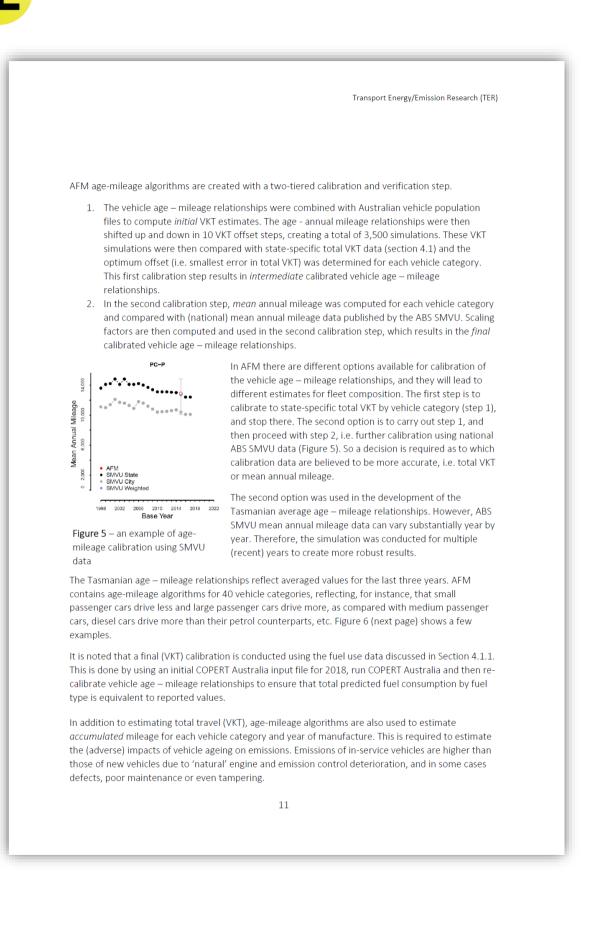
After the development of a detailed breakdown of the on-road vehicle population by main vehicle type, fuel type, engine capacity, gross vehicle mass and model year, the next step is to estimate vehicle usage for each vehicle category.

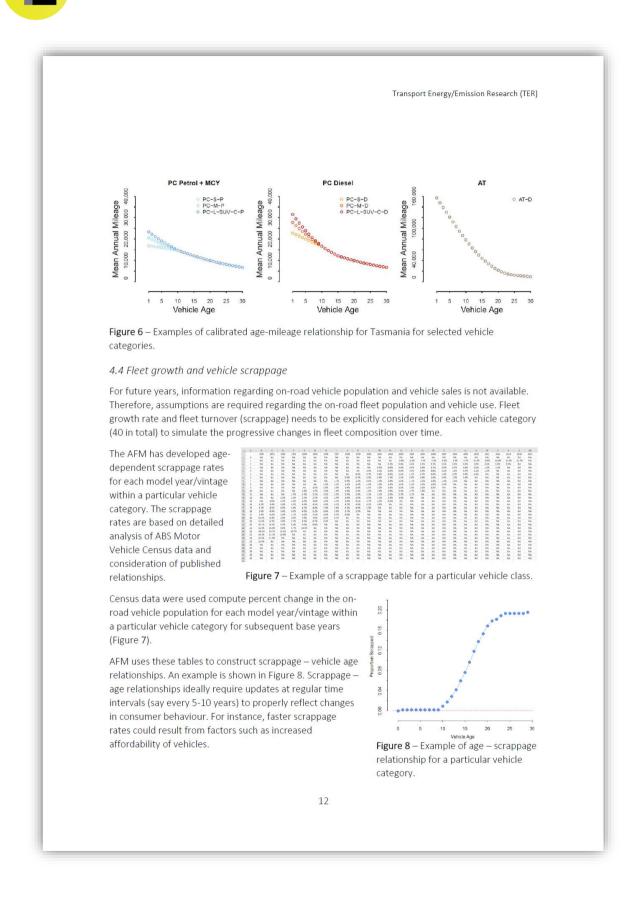
Vehicle usage for a particular vehicle category is reflected in a mathematical relationship between 1) vehicle age and mean annual mileage, and 2) between vehicle age and accumulated mileage. These functions are required to estimate total travel (expressed as vehicle kilometres travelled or VKT), and to estimate the impacts of emissions deterioration due to ageing.

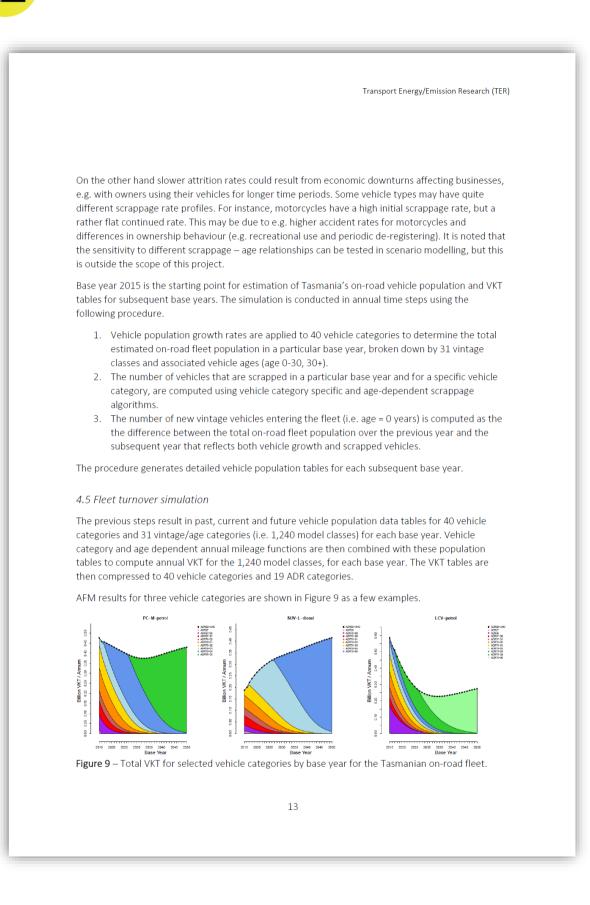
The relationships were developed by TER following analysis of Australian and New Zealand odometer data ^[15,16] and fitting of non-linear models (Figure 4), consideration of published relationships, and calibration to total travel (Section 4.1) and mean annual mileage data published by the ABS SMVU ^[4], as will be discussed below.

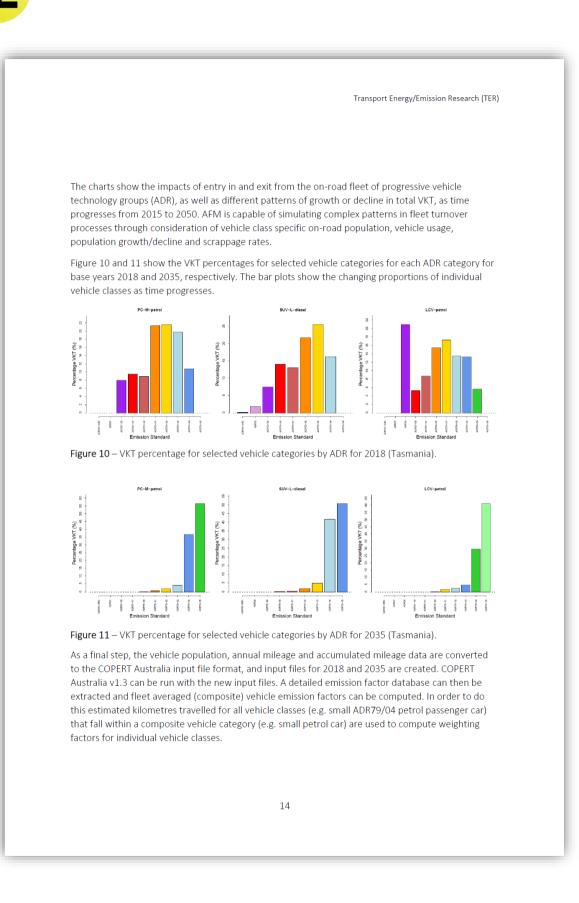
Figure 4 shows an example of fitting different linear and non-linear model algorithms to accumulated mileage data for Australian articulated trucks, regression verification (residual analysis) and assessment of model performance (R², RMSE, MPE)

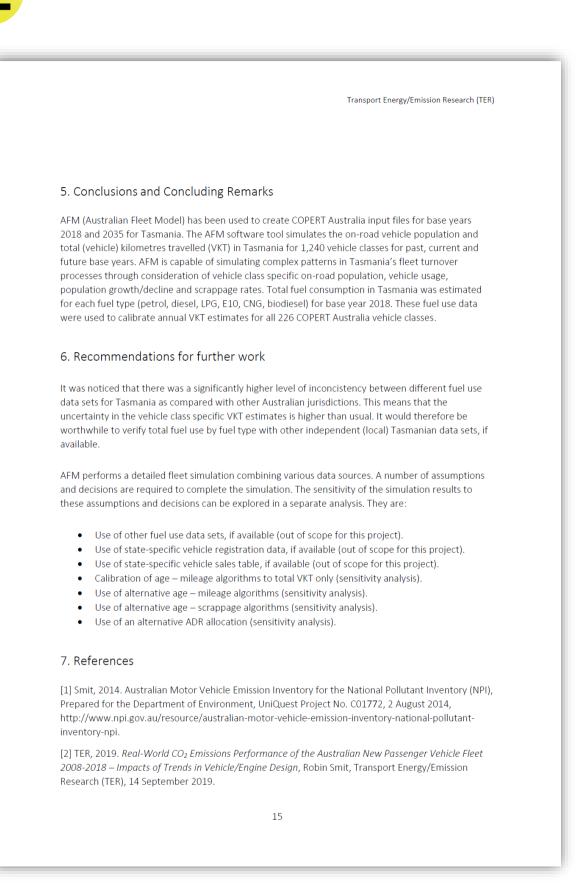



Figure 4 – an example of development of agemileage algorithms (articulated trucks).


to select the best model. The relationship between mean annual mileage and vehicle age is derived from these algorithms by simply computing the differences in accumulated mileage for subsequent years, i.e.


$$\overline{M_i} = \begin{cases} M_i & i = 0\\ M_{i+1} - M_i & 1 \le i \le 30 \end{cases}$$


where *i* indicates the vehicle age. The odometer data suggest that there is a difference between small, medium and large passenger cars for the first 10 years of driving. Small passenger cars drive about 20% less when new as compared with medium passenger cars, and the difference is almost linearly reduced to about zero at 10 years of age. Large (petrol) passenger cars drive about 15% more when new as compared with medium passenger cars, and the difference is almost linearly reduced to about zero at 10 years of age.


5420_AQ_R_Burbury Consulting - New Bridgewater Bridge Project air emissions assessment 12 November 2021

Transport Energy/Emission Research (TER)
[3] BITRE, 2011. Road Vehicle-Kilometres Travelled: Estimation from State and Territory Fuel Sales,
Bureau of Infrastructure, Transport and Regional Economics, Report 124, ISBN 978 1 921769 29 0.
[4] ABS, 2018 (and previous years), <i>Survey of Motor Vehicle Use</i> , 9210.0.55.001 and 9208.0.DO.001, Australian Bureau of Statistics, www.abs.gov.au.
[5] BITRE, 2018, Yearbook 2018: Australian Infrastructure Statistics, Bureau of Infrastructure, Transport and Regional Economics, Canberra, ACT, https://bitre.gov.au/publications/2018/yearbook_2018.aspx.
[6] ABS, 2018 (and previous years), <i>Sales of New Motor Vehicles</i> , 9314.0, Australian Bureau of Statistics, www.abs.gov.au.
[7] FCAI, 2019, <i>VFACTS National Report – New Vehicle Sales</i> , Federal Chamber of Automotive Industries (FCAI), Period 2008-2018, based on information provided by and with the permission of the Federal Chamber of Automotive Industries.
[8] BITRE, 2009. <i>Fuel Consumption by New Passenger Vehicles in Australia 1979-2008</i> , Information Sheet 30, ISSN 1440-9593.
[9] RTA, 2009. Second National In-Service Emissions Study (NISE2) Light Duty Petrol Vehicle Emissions Testing, Road and Traffic Authority of NSW (RTA), Report RTA.07.2828.0309, March 2009.
[10] GAE, 2018. Gas Energy Australia, pers.comm., John Griffiths, 18 December 2018.
[11] NSW EPA, 1997. <i>LPG In-Service Vehicle Emissions Study</i> , NSW Environment Protection Authority, May 1997.
[12] ALPGA, 2008. <i>Liquefied Petroleum Gas Supply and Demand Study</i> , Australian Liquefied Petroleum Gas Association Limited.
[13] ALPGA, 2010. The LPG Industry Report Card 2010, Australian Liquefied Petroleum Gas Association Limited.
[14] ABS, 2006. <i>Survey of Motor Vehicle Use – An Investigation into Coherence,</i> prepared by Skutenko, D., Cosgrove, D., Mitchell, D., Australian Bureau of Statistics, www.abs.gov.au.
[15] Smit, R., 2013. A procedure to verify large modal vehicle emissions databases, CASANZ 2013 Conference, Sydney, 7-11 September 2013.
[16] Rosevaer, 2013. <i>Quality Dynamics in the Light Vehicle Fleet</i> , 16 September 2013, Outcome Management Services, New Zealand.
16
16